
JAS http://www.jofamericanscience.org Journal of American Science 2024;20(12)

253

Non continuous allocation Algorithm for Increasing the Utilization Processor in Multi-Computers Network

Rahmat Zolfaghari

Islamic Azad University, Hashtgerd Branch, Department of Computer Engineering, Tehran, Iran*

zolfaghari@alum.sharif.edu

Abstract: Processor allocation is responsible for selecting a set of processors in order to run parallel work on them,

while job schedule is responsible for determination of executing works. Job Schedule selects the next job for

execution based on stated policy and then the processor allocation algorithm finds the free processors for the

selected work. Until now, several continuous and non continuous techniques have been given for processor

allocation in mesh multi-computers networks. Continuous allocation methods always try to allocate a free

continuous sub-mesh with the same requested dimensional structure to the parallel input job. For this reason, it

produces the internal fragmentation in the processors network. Non continuous allocation algorithms were produced

with the aim of removing processors fragmentation. In discontinuous allocation algorithms, message interference

between different jobs and strugle to get communication resources increases network communication overheads due

to the increase in path length passed by the message. This communication overhead is highly dependent on to the

manner of free sub-meshes allocation and the manner of recording by the algorithm. This reasearch, a non

continuous allocation algorithm called Efficient and Quick Non-Continuous Allocation (EQNA) algorithm has been

presented for a two-dimensional mesh network with C programming language. The efficiency of this algorithm

compared via simulator tool ProcSimity with other continuous and non continuous allocation algorithms .

Simulation results indicate improved Utilization Processor in the given algorithm.

Rahmat Zolfaghari. Non continuous allocation Algorithm for Increasing the Utilization Processor in Multi-

Computers Network. J Am Sci 2024;20(12):253-260]. ISSN 1545-1003 (print); ISSN 2375-7264 (online).

http://www.jofamericanscience.org. 04 doi:10.7537/marsjas201224.03

Keywords Utilization, multi-computers network, allocation processor, fragmentation, continuous and non

continuous allocation algorithms

Introduction

In large multi-computers, using an allocation

algorithm in particular and an efficient scheduled

algorithm is very crucial to have maximum

computing power. If input job cannot be executed

upon the arrival due to lack of processor and or other

jobs, it will be transferred to the waiting line. When

some processors are allocated to a job, this job keeps

the processors with itself until completion of work.

After completion, job is gone out the system and the

processors become free for other tasks. Most of the

continuous and non continuous allocation algorithms

have been designed for two-dimensional mesh

network. Mesh network has been the most favorite

network among other networks for implementation of

parallel computers with distributed memory due to

simplicity, scalability, regularity and easy

implementation and has been used in several

machines such as: iWARP, IBMBlueGene / L and

DeltaTouchstone [1]. Minimization of allocation time

in Grid multi-computers is a fundamental issue

because the main purpose of parallel execution is to

minimize the total time that a job spends upon the

entry to the exit moment in the system. With increase

in system size, time for finding sub-meshes for the

allocation to input job may be equal to the job

execution time. Hence, development of strategies for

minimizing search time (which is also called time

allocation) is very important. Methods of processor

allocation can be divided into two general categories:

continuous and discontinuous. In continuous

allocation methods, a set of free continuous

processors available in the network is allocated to

execute the input job. Allocation method as shown in

[2,3] results in high fragmentation. Excessive

fragmentation degrades performance parameters of

the system. In order to resolve the fragmentation that

occurred in the continuous allocation, discontinuous

allocation methods were proposed. Discontinuous

allocation is able to execute a job on several sub-

meshes smaller than that the input job has requested

and will not wait to release a continuous sub-mesh.

Although a discontinuous allocation increases

conflicts between messages in the system, it increases

processors utilization in using the system processors

and reduces the problem of fragmentation .Method of

allocation operations has a direct impact on algorithm

performance in discontinuous allocation algorithms

http://www.jofamericanscience.org/
mailto:zolfaghari@alum.sharif.edu
http://www.jofamericanscience.org/
http://www.dx.doi.org/10.7537/marsjas201224.04

JAS http://www.jofamericanscience.org Journal of American Science 2024;20(12)

254

proposed [4]. It should be noted that, processors

fragmentation operation must be conducted in a way

that the processors allocated to a job have necessary

continuity because this continuity has a crucial role in

decreasing communication overhead and maintains

useful efficiency of system resources. For those

discontinuous allocation algorithms presented for

two-dimensional meshes, it should be mentioned that

processor allocation operation is not conducted based

on continuous free sub-meshes available in the

network but it has been used predefined local models

or mathematical that reduce the efficiency of these

algorithms. A discontinuous allocation algorithm that

is called Efficient and Quick non-continuous

allocation algorithm (EQNA) has been proposed for a

two-dimensional mesh network [5,6, 7].

EQNA algorithm combines the advantages of both

continuous and discontinuous allocation methods.

For example, the advantage of continuous allocation

is to eliminate the communication overhead between

processors assigned to a job that is also deeply

considered in this algorithm. This algorithm has the

capability of complete detection and reduction of

allocation overhead. This quality is achieved by

maintaining the maximum continuity between the

processors assigned to a job.

EQNA algorithm is capable to be applied in both

two- and three-dimensional mesh multi-computers

networks. In this paper, EQNA algorithm

performance has been compared using simulations

with discontinuous allocation algorithms known as

Paging (0) and MBS. These two algorithms have

been selected because of the best performance

among other algorithms [8]. EQNA algorithm has

been compared to FF continuous algorithm in order

to show superiority of discontinuous allocation to

continuous allocation with respect to the problem of

fragmentation in continuous allocation. At first,

previous studies related to the processor allocation

algorithms in mesh networks will be reviewed. In

review of literature, studies conducted on

improvement in efficiency of allocation algorithms

will be investigated and the manner of these

algorithms performances will be summarized.

EQNA discontinuous allocation algorithm will be

described and the manner of allocation this

algorithm will be exemplified and EQNA algorithm

and implemented continuous and discontinuous

allocation algorithms have been compared from the

viewpoint of several important parameters in

performance. And finally, results of the previous

studies are discussed[9,10].

Research objectives

Processor allocation in distributed memory multi-

computer with distributed memory especially those

that are based mesh, In recent years, many studies

have found that their several examples of commercial

and experimental parallel machines used sharing

space for allocating processors. Previous research

suggests that continuous and discontinuous allocation

algorithms still have not found a good way and a new

allocation algorithm is needed .

Algorithms that are currently assigned to a processor

are presented for three-dimensional lattices, full

recognition feature to have sub-mesh but the ability

to withstand the heavy overhead cost allocation is

achieved that paid allocating and freeing the CPU to

perform. Allocation overhead associated with

increased mesh size, in the past algorithm increased

[11].

In the case of discontinuous allocation algorithms are

presented for two-dimensional mesh it should be said

these algorithms have several serious problems such

that it can be both internal and external fragmentation,

and interference within the network named. None of

these algorithms based on AMD sub-mesh free

allocation continuous operation of the network, but

where there are no pre-defined patterns or

mathematical models are used.

For example, ANCA is divided into two parts, labor

input if the allocation was successful for each of the

sectors these two sections are also divided into two

equal parts. MBS [12] used as input into the base and

four sub-mesh sized based on 4 Assigns. Allocation

based on profile pages, which are usually

independent of the application is determined, the

network is partitioned. Thus, these algorithms may

have a great free sub-mesh, it may not be able to

allocate the time for completion of such parameters

would affect the system performance.

The main focus of this study is present a new way

and efficient in the field discontinuous and

continuous allocation for mesh multi-computer that

current assignment is to overcome the limitations of

existing methods and be able to utilize the advantages

of both methods.

A method that keeps higher affinity compared with

the previous allocation algorithms, among the

processors allocated to a task. This reduces the

number of sub-mesh assigned to a task and hence the

path traveled by messages on the decline. The

reduction pathway, leading to lower communication

overhead in the network and consequently decreases

the completion time of the job will entail.

Review of literature

Definitions and methods of continuous and

discontinuous allocation used for multi-computers

mesh networks have been reviewed in this section.

Definitions

http://www.jofamericanscience.org/

JAS http://www.jofamericanscience.org Journal of American Science 2024;20(12)

255

A two-dimensional mesh M (w, h) is a rectangle of

nodes with dimensions of w × h where w is width and

h is the height of the rectangle. Each node of mesh is

a processor that is known with the address of its

characteristics. A node in column and row b has the

coordinate of 〈𝒂, 𝒃〉 where 𝟎 ≤ 𝐚 < 𝒘 and 𝟎 ≤ 𝐛 <
𝒉 . Node 〈𝑖, 𝑗〉 that is not in borderlines of mesh

approximates and connects directly with other four

nodes: 〈𝑖 ± 1, 𝑗〉 and 〈𝑖, 𝑗 ± 1〉 so that 0 < 𝑖 < 𝑤 − 1

and 0 < 𝑗 < ℎ − 1 . In borderlines, each node

approximates and connects to other two or three

nodes according to its situation .
Definition 1: two-dimensional sub-mesh S (a, b) in

the mesh M (w, h) is a subnet M (a, b) that 0 ≤ 𝑎 ≤
𝑤 and 0 ≤ 𝑏 ≤ ℎ. When a job requests a sub-mesh

with dimensions 𝑎 × 𝑏, this job is expressed via T (a,

b). Address for sub-mesh S is known by its end and

base node that is a four-parameters variable as
〈𝑥, 𝑦, 𝑥′, 𝑦′〉 where, < 𝑥, 𝑦 > shows the lower left

corner and 〈𝑥′, 𝑦′〉 shows the upper right corner of

sub-mesh S. it is clear that𝑎 = 𝑥′ − 𝑥 + 1 and 𝑏 =
𝑦′ − 𝑦 + 1 and base node of sub-mesh, is 〈𝑥, 𝑦〉 and

the sub-mesh area is the number of nodes inside it

that is equal to 𝑎 × b.

Definition 2: Busy sub-mesh 𝛽 is a sub-mesh that all

its nodes are assigned to a job at that moment. A set

of busy sub-meshes B is the set that set includes all

the busy sub-meshes available in the network that is

called busy list. For example, in figure (1), three busy

sub-meshes exist in network M (6, 6); therefore, 𝐵 =
{𝛽1, 𝛽2, 𝛽3} where 𝛽1 = 〈0,0,1,2〉 , 𝛽3 = 〈4,3,5,5〉,
𝛽2 = 〈2,0,3,1〉 are the members of this set.

Definition 3: Coverage sub-mesh for busy sub-

mesh 𝛽 is expressed according to the input T that is

a sub-mesh that none of its nodes can be selected as

the basis node of a free sub-mesh for allocation to job

T with respect to busy sub-mesh𝜗β,T. Coverage sub-

mesh 𝜗β,T is equal to 〈𝑥𝑐 , 𝑦𝑐 , 𝑥′, 𝑦′〉 for

𝛽〈𝑥, 𝑦, 𝑥′, 𝑦′〉and the job 𝛽 where, 𝑦𝑐 = max (0, 𝑦 −
𝑏 + 1) and 𝑥𝑐 = max (0, 𝑥 − 𝑎 + 1). A according to

the input job T, coverage set ∁T is a collection of

coverage sub-meshes for the job T where, ∁T=

{ϑβ,T|β ∈ B}. For example, for the input job T (3, 2)

in figure (1), we have: 𝜗𝛽1,𝑇 = 〈0,0,1,2〉 ، 𝜗𝛽2,𝑇 =

〈0,0,3,1〉 ،𝜗𝛽3,𝑇 = 〈2,2,5,5〉 ، ∁T=
{〈2,2,5,5〉, 〈0,0,3,1〉, 〈0,0,1,2〉}

Definition 4: According to the input job T, reject 𝛿𝑇

sub-mesh is a sub-mesh including some processors

that is a sub-mesh that none of its processors can be

regarded as the basis node of a free sub-mesh for

allocation to job T with respect to its dimensions.

There are two reject sub-meshes for each T:

horizontal(𝛿𝑇𝐻) and(𝛿𝑇𝑉) vertical. It is simple to

calculate them i.e. 𝛿𝑇𝑉 = 〈𝑎′, 0, 𝑤, ℎ〉 and 𝛿𝑇𝐻 =
〈0, 𝑏′, 𝑤, ℎ〉 and 𝑎′ = 𝑤 − 𝑎 + 1 𝑎𝑛𝑑 𝑏′ = ℎ − 𝑏 + 1

where, 𝑤 × ℎ is sub-mesh size. A set of reject sub-

meshes ∆𝑇 is calculated by adding 𝛿𝑇𝐻 and 𝛿𝑇𝑉. For

example, 𝛿𝑇𝐻 = 〈0,5,5,5〉 and 𝛿𝑇𝑉 = 〈4,0,5,5〉 in

figure (1).

(0,0)

(3,1) (5,1)

(5,0)(4,0)(2,0)(1,0) (3,0)

(4,2)(3,2)

(4,1)

(4,3)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2) (5,2)

(0,5) (1,5) (2,5) (3,5) (5,5)(4,5)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

(5,3)(0,3) (1,3) (2,3) (3,3)

Busy Submesh

Coverage Submesh

Reject Submesh

Fig .(1) An example of allocation for T (3, 2)

Continuous allocation Algorithms

Continuous allocation has been proposed for mesh

multi-computers networks. Most previous studies

have been focused on reducing the negative effects of

fragmentation of processors on the system efficiency

due to the continuous allocation. Some known

solutions will be described below.

First-Fit(FF)/ Best-Fit (BF) Algorithm

First-Fit/ Best-Fit algorithms were proposed to

improve the efficiency of the sliding frame. First-Fit

algorithm is implementable on the sub-mesh with any

size as sliding frame and can allocate a sub-mesh

with the requested size correctly. This algorithm

keeps bit map of the status of mesh free and allocated

nodes in the array called busy array and according to

the job given for allocation, look for busy array

algorithm for creating an array called coverage array.

Coverage array has been produced by scanning all

busy arrays from left to right and top to bottom and

returns the address of the first free node found in

coverage array as a base node for allocation. Best-Fit

method is similar to First-Fit but it returns a node as a

job basis node where its sub-mesh has the most

allocated neighbors. The simulation results show that

First-Fit method is better than Best-Fit. In First-Fit/

Best-Fit, whole mesh must be scanned to find the

base node. Therefore, it is the time complexity of

algorithm O (N) where N is the number of processors.

First-Fit method has not a complete diagnosis.

Another drawback of this algorithm is high overhead

due to the array manipulation that decreases the

popularity of this algorithm, especially in the large

meshes.

Discontinuous allocation Algorithms

With the developments in routing techniques such as

wormhole switching, delayed communication had a

http://www.jofamericanscience.org/

JAS http://www.jofamericanscience.org Journal of American Science 2024;20(12)

256

fewer sensitivity to distances between nodes. These

developments led to a more acceptable form of

discontinuous allocation in networks with large

diameters such as mesh. in a case of sufficient

processors for allocation, discontinuous allocation

does not seek for data execution and necessarily a

continuous pattern. Some non continuous allocation

methods will be examined here.

Paging allocation Algorithm

Paging allocation method divides the whole mesh

into pages that are sub-meshes with equal sizes and in

length 2𝑠𝑖𝑧𝑒_𝑖𝑛𝑑𝑒𝑥 is larger than or is equal to zero. A

page is regarded as an allocation unit. To determine

the type of navigation, pages are identified by the

same index. Page sizes are expressed by paging(size

index) . For example, Paging (2) means the pages that

composed of sub-meshes with dimensions 4× 4. If a

job asks for a sub-mesh with dimensions𝑎 × 𝑏 , the

number of required pages is calculated by the

formula⌈
(𝑎 × 𝑏)

𝑃𝑠𝑖𝑧𝑒⁄ ⌉ where, Psize is the page size.

This algorithm maintains free pages in a list and in a

case of request; it allocates from this list and returns

it to the list when releasing the page. If in a case of

size index=0, there is no fragmentation but there is

fragmentation with increase in size index, time

complexity of algorithm is 𝑂(𝑎 × 𝑏).

Multiple Buddy Systems (MBS) Algorithm

 Binary shape of this algorithm is a developed form

of [8]. This method divides mesh network into a

square and non-overlapped sub-meshes with

dimensions of 2 square. If a job asks for a processor

P, this request is converted to the request in base 4. In

this way, P = dk × (2k × 2k) + ⋯ + d0 × (20 × 20)

so thatd0 … dk ∈ {0,1,2,3}. Algorithm tries to allocate

di × (2i × 2i) according to the available resources. If

some blocks do not exist, the algorithm breaks

repeatedly the larger blocks and converts them to

four smaller partners in order to achieve its intended

size.

Four-partners blocks will be(2j × 2j) and four blocks

will be (2j−1 × 2j−1) . In a case of sufficient

processors, algorithm is always successful because

the smallest part that can be allocated is block 1 × 1 .

Consequently, there will be no fragmentation. Time

complexity of this algorithm is O (N) where N is the

number of processors in system.

Continuous allocation for mesh multi-computer

networks has been proposed. Most previous studies

on the negative effects of fragmentation on system

performance processors, which arise due to the

continuous allocation, has been focused. In the

following we describe some approaches are

known.An example of processor allocation strategies

have been proposed for two-dimensional mesh multi-

computer of Two Dimensional Buddy System

(2DBS) , "frame sliders" (FS), "adaptive dynamics"

(AS), and the 'allocation of first choice "(FF) and the"

best choice "(BF) DBS2 has a very simple structure,

but only about a foot square mesh system is

implemented and the fragmentation has many

internal and external.

FS method on mesh systems can be implemented

with any size, but due to the lack of full recognition

sub-mesh, the cause is external fragmentation. The

"frame sliders" for its relevance to the desired length

and width sub-mesh very incomplete and therefore

lots of free sub-mesh ignores the network. AS

method is able to efficiently use the rotation of the

system when the primary mode of operation was not

successful allocation, improve.

In this method, a task for which allocation requests

sub-mesh a*b, b*a sub-mesh can be allocated. Time

allocation methods for AS compared with the FS

longer, because the AS, dynamics processors in the

network mesh with the movement as a CPU, along

the vertical is done, the FS of the jump size width

sub-mesh requested to use will. FF and BF methods

are also fully recognized, because these two

dimensions do not consider the rotated position.

Examples of discrete methods include random

allocation , the allocation-page, multi-assist technique

(MBS), Adaptive Non-Contiguous Allocation

(ANCA) , adaptive and dynamic allocation of

combination multi-assist (AS & MBS) and page

variables . In practice, random fragmentation problem

goes away, but the interactions between the jobs to be

created in a relationship. The degree of coherence

among the processors allocated to a page dedicated to

the preservation and continuity of the pages with

larger size increases. The page size is much larger

than the amount of internal fragmentation becomes

greater. With emerged MBS system performance

increasing compared to the previous solution was

found, but MBS also has disadvantages.

For example, despite a sub-mesh joined MBS in the

network is equal to or greater than sub-mesh was also

asked, In most cases, it was not able to allocate a

smaller sub-mesh And apart from that used for the

allocation and increases the communication overhead.

ANCN incoming requests to Section 2i, the ith

iteration splits. At each step, the algorithm tries to

find sub-mesh to allocate a request, and if

unsuccessful sub-mesh in half and re-scan it.

One of the major drawbacks of this method is that the

network does not pay attention to the big sub-mesh

and the algorithm always tries to allocate its

fragments that do not necessarily cut the pieces in

this great free sub-meshnot included and

subsequently as a result of a division operation is

http://www.jofamericanscience.org/

JAS http://www.jofamericanscience.org Journal of American Science 2024;20(12)

257

performed. If the size of the pieces finally come to an

end operations mesh is a large increase

communication overhead. AS & MBS algorithm in

terms of response time and service time is the same

MBS, However, AS & MBS increased overhead

allocation problem in large mesh networks. The page

variable assignment, allocation unit allocation unit is

larger than a CPU but can also be used as MBS and

ANCA. Consequently, a variable assignment page in

large networks, the time required to reach a final

decision.

Rsearch Algorithm; Efficient and Quick Non-

Continuous Allocation algorithm(EQNA) for

Utilization

 Suppose that the input job T (3, 2) has been given to

the system and we can do the allocation by use of

EQNA algorithm. It is clear form figure (1) that busy

sub-meshes include 𝜷𝟐 = 〈𝟐, 𝟎, 𝟑, 𝟏〉 , 𝜷𝟏 =
〈𝟎, 𝟎, 𝟏, 𝟐〉 and 𝜷𝟑 = 〈𝟒, 𝟑, 𝟓, 𝟓〉 that were allocated

in mesh network M (6, 6). According to the busy sub-

meshes and the input job T, the coverage sub-meshes

will be ∁T= {〈2,2,5,5〉, 〈0,0,3,1〉, 〈0,0,1,2〉} and the

reject orizontal and vertical areas are 𝜹𝑻𝑯 =
〈𝟎, 𝟓, 𝟓, 𝟓〉،𝜹𝑻𝑽 = 〈𝟒, 𝟎, 𝟓, 𝟓〉
The main idea for EQNA algorithm is to collect

information from available rows in sub-mesh

network via the coverage sub-meshes made of the

busy sub-meshes. From this information, we can

determine in the shortest time whether there is a node

in a row for allocation to the input job T as the base

node. This information is merely obtained by the

comparison of the coverage sub-meshes and the rows

and minimizes the comparisons in search spaces and

finally allocation time and waiting time a great

degree.

For algorithm performance, it is necessary to

introduce a one-dimensional array called last-covered,

which keeps the very right node covered in each (x-

coordinate) row in the mesh network. In this article, a

set of connected nodes in a row of mesh net is called

a piece that begins from the very left node in the row

(It is usually zero in definitions). If all the nodes in a

piece belong to one of the coverage sub-meshes ∁T,

then that piece is called “coverage piece”. In array j

of array last covered[j] where, 1 ≤ 𝑗 ≤ 𝑏′ − 1 , it

keeps x-coordinate of the last node of coverage piece

in the row j. At the beginning, algorithm calculates

reject sub-meshes ∆𝑇 after determination of the

coverage sub-meshes according to the dimensions of

the input job and eliminates it from whole search

domain. Then, we arrange the coverage sub-meshes

according to their coordinate Xc of base node

parameters in an ascending form and then calculate

the values of arrays last-covered by the last-covered

function. If there is no coverage piece in the j row,

the value of last-covered[j] will be zero. For example,

the values of last-covered[j] for ∫=0,1,2,3,4 will be

(3,3,5,0,0) respectively.

Procedure Submesh Allocation

{

Step 1.flag←false. /* flag representing the orientation

*/

Step 2.Job_Size= 𝑎 × 𝑏

Step 3. Decide the orientation of T as follows, and

determine

the reject set.

if (flag = false)

thenT ←T(w, h), a' ←a-w + 1, b'←b-h + 1

elseT←T(h, w), a'←a-h + 2, b←b-w + 1

Step 4. Based on current B and T, determine 𝝑𝛃,𝐓 and

Last_covered[j] (1 ≤ j ≤ b′ − 1)← 0

 For each 𝛃〈𝐱, 𝐲, 𝐱′, 𝐲′〉, determine

 𝛝𝛃,𝐓〈𝐱𝐜, 𝐲𝐜, 𝐱′, 𝐲′〉

 Arrange 𝛝𝛃,𝐓 s in the increasing order of 𝐱𝐜

 For each 𝛝𝛃,𝐓 (starting from one whose 𝐱𝐜 is

smallest)

 If (𝐲𝐜<b′)

 For each row j (yc ≤ j ≤ min (y′, b′ −
1))

 If(xc ≤ last_covered[j] + 1 ≤ x′)then

last_covered[j] ← x′
Step 5.

j←1

while (j <b' AND last_covered[j] + 1 ≥a') /* no

freesubmesh is found in the j th row */

j←j+ 1

if (j = b') /* no free submesh found in that orientation

*/

if (flag = false)

then flag←true and go back to Step 3

elsei← (last_covered[j] + 1) and go to Step 6. /*a

freesubmesh is found */

Step 6.

If (flag = false)

thenS ←<i, j, i + w-1, j + h-1>

elseS ←<i, j, i + h-1, j + w-1>

Allocate S to T and add S to B.

Return success

For example, in figure (1) 𝛽2 = 〈2,0,3,1〉 , 𝛽1 =
〈0,0,1,2〉 and 𝛽3 = 〈4,3,5,5〉 and the input job T=(3 ,

2) and b'-1=4 , then the last-covered is calculated as

follows: last_covered[j] (j=0,1, 2, 3,4)= 0

By using three coverage sub-meshes 𝜷𝟑 و𝜷𝟐, 𝜷𝟏 we

get three sub-meshes 𝝑𝜷𝟏,𝑻 = 〈𝟎, 𝟎, 𝟏, 𝟐〉 , 𝝑𝜷𝟐,𝑻 =

〈𝟎, 𝟎, 𝟑, 𝟏〉 and 𝝑𝜷𝟑,𝑻 = 〈𝟐, 𝟐, 𝟓, 𝟓〉 then we arrange

them as, 𝝑𝜷𝟏,𝑻, 𝝑𝜷𝟐,𝑻 and 𝝑𝜷𝟑,𝑻.

According to the 𝝑𝜷𝟏,𝑻, the values last-covered[j] for

j=0, 1, 2 equals 2. For j=0,1 the values of last-

covered[j] for 𝛝𝛃𝟑,𝐓 equals to 3 and with the quantity

http://www.jofamericanscience.org/

JAS http://www.jofamericanscience.org Journal of American Science 2024;20(12)

258

of last-covered [2] is changed and equals to 5. Final

value , for 5 element last_covered (left to right) is:

(0,0,5,3,3) .
As it can be seen, if a node belong to sub-mesh𝛽, it

belongs certainly to sub-mesh ∁𝑇 . There for, for

determining the dependency of a node, we need to

examine coverage sub-meshes. And last-covered has

the necessary information in this regard. By

examining the values of this array, we can determine

whether a node exists to allocation to a job. Now, we

have b=5 and a=4 for allocating a node to the job

according to fig.1 and because 𝑙𝑎𝑠𝑡_𝑐𝑜𝑣𝑒𝑟𝑒𝑑[𝑗](1 ≤
𝑗 ≤ 3) + 1 ≥ 𝑎′, the result of value j is equal to 4.

Then, because 𝑙𝑎𝑠𝑡_𝑐𝑜𝑣𝑒𝑟𝑒𝑑[4] + 1 < 𝑎′, node〈1,4〉
can be allocated to the job T as a base node. Note that

EQNA algorithm is more time-saving in compared to

other methods.

 Procedure EQNA_Allocate (a,b)

{

Total_Allocated=0

Job_Size= 𝑎 × 𝑏

 Step1. if (number of free processors<Job_Size)

 Return failure.

 Step2. if (there is a free S(x,y) suitable for S(a,b))

 {

Allocateit using Submesh Allocation contiguous

allocation algorithm.

 return success.

 }

Step3. 𝛼 = 𝑎 and 𝛽 = 𝑏

Step4. Subtract 1 from max (𝛼, 𝛽) if max >1

Step5. if(Total_allocated + (𝑎 × 𝑏) >Job_Size go to

step4

Step6. if there is a free S (x,y) suitable for 𝑆(𝑎 × 𝑏)

 {

 allocate it using Submesh Allocation.

 Total_allocated = Total_allocated+ (𝑎 × 𝑏).

 }

Step7. if (Total_allocated = Job_Size)

 return success.

 else

 go to Step4.

}end procedure

In EQNA algorithm, when a parallel job is chosen for

the processor allocation, the algorithm begins to

search for a mesh in order to find a suitable sub-mesh

for the input job. If the requested sub-mesh is found,

it will be allocated to the job and the allocation

process will be ended. Otherwise, the largest free

sub-mesh which can be placed in S (a, b) will be

allocated to it. Then the algorithm will search for the

largest sub-mesh whose dimensions do not exceed

the previous allocated sub-mesh provided that the

number of the allocated processors does not exceed

the quantity 𝒂 × 𝒃 The last phase is repeated until

𝒂 × 𝒃 processors are allocated. For example, take

into account the mesh situation M (6, 6) which is

shown in figure (1) and then suppose that the input

job has asked for a sub-mesh with the dimensions

𝟔 × 𝟐 As we see in the figure, there are no free 𝟔 × 𝟐

sub-meshes. Therefore, EQNA algorithm of the

free 〈𝟎, 𝟑, 𝟑, 𝟒〉 and 〈𝟒, 𝟎, 𝟓, 𝟏〉 sub-meshes are

allocated to it as we will explain. First, the algorithm

subtracts one unit from the largest angle of the

requested sub-mesh; and the result will be sub-mesh

𝟓 × 𝟐 which does not exist again. The process of

subtraction goes on until the sub-mesh 𝟒 × 𝟐 is

obtained which does exist. Then, the algorithm while

expressing that the quantity of the processors should

not exceed 𝟔 × 𝟐, will try to choose the sub-mesh

whose dimensions does not exceed the previous

allocated sub-mesh (𝟒 × 𝟐) . In this example,
[(𝟒 × 𝟐) + (𝟒 × 𝟐)] > (𝟔 × 𝟐) consequently, the

algorithm subtracts one unit from the largest angle of

the sub-mesh (𝟒 × 𝟐)and the result of the sub-mesh

will be (𝟑 × 𝟐) . But again, [(𝟒 × 𝟐) + (𝟑 × 𝟐)] >
(𝟔 × 𝟐), the subtraction goes on until the summation

of the angles of the sub-mesh is less than the

dimensions of the allocated submesh or equals the

intended processors (𝟔 × 𝟐) . In this example,
(𝟐 × 𝟐) sub-mesh is obtained which is available in

the system. Then, the sub-mesh〈4,0,5,1〉 is allocated

to the job and the process is finished.

Algorithms results comparison for Utilization

Here, we represent the results of the simulation of

some continuous and non-continuous allocation

methods such as Paging (0), MBS and First-Fit (FF).

We perform the algorithm of the allocation and

release of these methods with the C language, and as

similate it by the as similation software ProcSimity

which is a tool for as similating processor allocation

and priority given to the job in multi-computers

systems .

The mesh model which is used in assimulation is a

square mesh with the length of L. The way of

producing and entering of jobs are supposed to be of

powered distribution and are serviced in the form of

FCFS. The time of doing is supposed as the form of

powered distribution with the average amount of a

time unit. Two kinds of distributions are used for the

way of producing the length and the width of the job.

The first one is the monotonous distribution on [1, L]

in which the length and width of the job are produced

separately. The second one is the powered

distribution in which the length and the width of the

job are produced in the powered form and with the

average of half of the entire mesh. These distributions

are the ones which are used in most assimilations .

Each assimilator is based on a perfect implementation

of 1000 jobs. The results of assimilation on a

http://www.jofamericanscience.org/

JAS http://www.jofamericanscience.org Journal of American Science 2024;20(12)

259

sufficient number of implementation are averaged.

Thus, their reliability is %90 and the error is less

than %5. The inter-communication network uses a

crawling procedure and an XY routing. Sending fleet

data between two adjacent nodes takes a time unit

and t1 time unit is spent for finding the route of the

fleet between two nodes. The message length is

shown as[𝟏, 𝐋]. The allocated processors use one of

the current communication models. The first model is

the all to one model. In this model, a processor which

is randomly chosen from a job sends the data packs

to all of the processors of that job. As it has been said

in [8, 11, 12], the number of the messages produced

by a given job has a powered distribution of an

average quantity of num-mes. The second

communication model is called the all to all model in

which each allocated processor to a job sends the data

packs to all the processors of that job. This

communication model creates much message

communication involvement in the network and this

is the weakness of non- continuous allocation

algorithms.

In both models, the processors allocated to a job in a

linear array are recorded and are numbered by a

network row scanning in the array. The processor as

similator choses the starting point and the destination

from this array and then determines the starting point

and the destination coordinates by a record. The

system on which the assimilation is done is a
(16 × 16) mesh in which the 𝒕𝒔 = 𝟑 time unit and

the fleet is 𝑷𝒍𝒆𝒏 = 𝟖 and the num-mes=5

The parameter chosen for comparison is: mean

system utilization. The average optimum use of the

system is the percentage of using system processors

during the implementation; and it is estimated as

follows:

 System Utilization = ∑
w×h−ni

(w×h)×t
 (1) t

i=1

 In this formula 𝑛i is the number of free processors of

the system in time i and t is the total spent time, and

𝑤 × ℎ is the number of the system processors.

System loading is an independent parameter in the

system which has an invert relation with the mean

inter-arrival of jobs and is estimated as follows:

λ =
N × Te

System Load × P
 (2)

In this formula F is the total number of the

processors and the jobs are entered into the system by

the potation distribution and the rate of the λ in the

time unit. N is the average number of the wanted

processors by each job, and 𝑻𝐞 is the average

powered distribution of the implementation time.

Utilization

Fig.(2) and Fig.(3) have shown the average

productivity of system resources in the allocation

algorithms EQNA, MBS, Paging (0) and FF for both

communicating models and job size distribution. The

assimilation results in these figures are obtained in

the system's heavy load. The heavy load, i.e. the

waiting line of the system is rapidly filled and causes

the allocation algorithm to reach the highest level of

using the system's resources. For both job size

distributions of non-continuous allocation algorithms

they found an average productivity quantity of %71

to %76, but the continuous method FF could not go

beyond %50, and this was because doing EQNA

operation by other allocation algorithms for both of

job size distributions showed a better performance.

Also, it has been shown that the allocation is

continuously done and after that fragmentation

occurred that prevents a good allocation. The average

productivity of system resources for non-continuous

algorithms for both job size distributions is almost

equal and this is because both of these algorithms

have the same power in reducing the fragmentation.

When the numbers of free processors of the system

were equal or more than to the requested processors,

these algorithms always do the job allocation

successfully.

Fig. (2) The optimum use of system resources in

continuous and non-continuous methods for both

communicating models with monotonous distribution

of job dimensions in 16 * 16 sub mesh

Fig. (3) The optimum use of system resources in

continuous and non-continuous methods for both

communicating models with powered distribution of

job dimensions in 16 * 16 sub mesh

Conclusion

The Utilization of EQNA was compared with the of

continuous and non continuous algorithms. The

results of assimilations shown that EQNA in spite of

0

0.2

0.4

0.6

0.8

1

One to All All to All

QNA

FF

MBS

Paging(0)

U
ti

liz
at

io
n

 (
%

)

0

0.2

0.4

0.6

0.8

1

One to All All to All

QNA

FF

MBS

Paging(0)

U
ti

liz
at

io
n

 (
%

)

http://www.jofamericanscience.org/

JAS http://www.jofamericanscience.org Journal of American Science 2024;20(12)

260

the available communicating in the net, it has been

resulted of interference of different jobs messages

with each other; it increasing the Utilization to a great

extent. EQNA also efficiently takes advantage of the

system's resources while keeping maximum

consistency and preventing internal and external

fragmentation.

Also, the results considerably shown that EQNA

with respect to job completion time which is an

important parameter of Utilization has superior to

known allocation methods such as FF, MBS and

Paging (0). Further more; the experiences prove that

EQNA also has a better performance in comparison

to the previous continuous and non-continuous

allocation techniques when the packs are longer and

the sub meshes systems have larger dimensions. It is

expected that this procedure practically keeps its

Utilization because when the sub mesh dimension get

larger, it increasing the needs of the programs such as

the number of the required processors as well. results

of this study can be an effective step to develop super

computer.

REFERENCES

[1] Bani-Mohammad S., Ould-Khaoua M., and

Ababneh I., “A new processor allocation

strategy with a high degree of continuity in

mesh-connected multicomputers,” Simulation

Modelling Practice and Theory, pp. 465-480,

2007.

[2] Blumrich M., Chen D., Coteus P., Gara A.,

Giampapa M., Heidelberger P., Singh S.,

Steinmacher-Burow B., Takken T., Vranas P.;

"Design and Analysis of the BlueGene/L

Torus Interconnection Network," IBM

Research Report RC23025, pp. 231-235, 2003.

[3] Chang C. Y., Mohapatra P.; "Performance

improvement of allocation schemes for mesh-

connected Computers," Journal of Parallel and

Distributed Computing, pp. 40-68, 1998.

[4] Aridor Y., Domany T., Goldshmidt O.,

Kliteynik Y., Moreira J., and Shmueli E.;

"Open Job Management Architecture for the

Blue gene/L Supercomputer," Proceedings of

the 11th Workshop on Job Scheduling

Strategies for Parallel Processing, pp. 91-107,

2005.

[5] Chuang P. J., Tzeng N. F.; "Allocating precise

submeshes in mesh connected systems,"

IEEE Transactions on Parallel and Distributed

Systems, pp. 211-217, 1994.

[6] Kim G., Yoon H.; "On submesh allocation for

mesh-connected multicomputers: a best-fit

allocation and a virtual submesh allocation for

faulty meshes," IEEE Transactions on Parallel

and Distributed Systems, pp. 175-185, 1998.

[7] Lo V., Windisch K., Liu W., and Nitzberg B.;

"Non-contiguous processor allocation

algorithms for mesh-connected

multicomputers," IEEE Transactions on

Parallel and Distributed Systems, pp. 712-726,

1997.

[8] Windisch K., Miller J.V, Lo V.; "ProcSimity:

an experimental tool for processor allocation

and scheduling in highly parallel systems," in:

Proc. 5th Symposium on the Frontiers of

Massively Parallel Computation, IEEE

Computer Society Press, pp. 414-421, 1995.

[9] Zhu Y.; "Efficient processor allocation

strategies for mesh-connected parallel

computers," Journal of Parallel and Distributed

Computing, pp. 328-337, 1992.

[10] D. G. Feitelson, Workload Modeling for

Computer SystemsPerformanceEvaluations,

2007http://www.cs.huji.ac.il/~feit/wlmod/wlmo

d.pdf

[11] L. He, S. Jarvis, D. Spooner, H. Jiang, D.

Dillenberger, and G. Nudd, Allocating Non-

Real-Time and Soft Real-Time Jobs in

Multiclusters, IEEE Transactions on

Parallel and Distributed Systems, vol. 17, no.

2, pp. 99-112, 2006.

[12] M. Levine, CRAY XT3 at the Pittsburgh

Supercomputing Centre, DEISA

Symposium, Bologna, 4-5 May 2006.

MR Rahmat Zolfaghari is presently

working as faculty in Islamic Azad University

Hashtgerd Branch, Department of Computer

Engineering, Tehran Iran, He is having 12 years

experience both in industry and academia, He

received his Software Engineering Bachelor

(BS) of Shahid Beheshti University in Iran and

Software Engineering Master (MS) of Sharif

University of technology in Iran, His research

interests are Database, Software Design ,

Modelling and E_Commerce.

11/2/2024

http://www.jofamericanscience.org/

