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Abstract: machine learning has two phases: training and testing. In the training phase, a set of examples (i.e., data 

with their corresponding labels) are available. With a given machine learning algorithm, the example data are used to 

train a model (i.e., tune its parameters) so that it can identify the relationship between input data and the labels. In the 

testing phase, input data without labels go through the same methodology as the training phase for preprocessing, 

feature extraction, and feature reduction, and a trained model, which was estimated during training phase, predicts the 

output (i.e., labels). The main objective during the training phase is to estimate a model that has maximal predictive 

performance at the time of testing. 
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Introduction: Electroencephalography is a 

noninvasive method to directly measure neural 

activity from electrodes placed on the scalp [1]. 

Synchronous activity of a large population of 

neurons generates an electric field that is strong 

enough to reach the scalp, which is recorded as the 

electroencephalogram (EEG) with a high temporal 

resolution [2]. Directly recording neural activity is 

one of the advantages of EEG compared to other 

neuroimaging methods, such as functional magnetic 

resonance imaging (fMRI) and functional near-

infrared spectroscopy (fNIRS), which measure 

biochemical activity as a proxy for neural activity [3, 

4]. Moreover, due to its high temporal resolution, 

EEG captures a wide range of neural oscillations. 

These rhythms have been categorized into five 

standard bands: delta (0.5–4 Hz), theta (4–8 Hz), 

alpha (8–12 Hz), beta (13–30 Hz), and gamma (>30 

Hz) [5]. Studies have shown that brain activity in 

each frequency band is associated with different 

cognitive functions [5]. These advantages make 

EEG a viable and practical option to investigate 

important questions in not only neural engineering 

and neuroscience but also clinical applications and 

disease diagnosis. EEG signals contain a substantial 

amount of information with respect to spatial, 

temporal, and spectral aspects. This makes EEG a 

suitable method to investigate various aspects of 

brain function and cognition. However, the richness 

of EEG [5] comes at a cost, where data can be high 

dimensional and may have a low signalto-noise ratio, 

which poses a considerable challenge to process 

EEG and identify patterns of interest. Machine 

learning has received considerable attention in the 

field to address the inherent challenges of EEG. EEG 

is usually contaminated with noise and artifacts, 

such as eye movement, slow drift, and muscle 

artifact [6]. To increase the signal-to-noise ratio, a 

preprocessing step is commonly included to 

minimize artifacts and reduce unwanted noise. This 

step can include various procedures such as band-

pass filtering [7], artifact subspace reconstruction [8], 

independent component analysis, spatial filters, 

minimizing muscle artifact, and artifact rejection [3]. 

In preprocessing, however, one has to be cautious 

and visualize data to avoid eliminating any 

meaningful and informative component of EEG 

Applications  

An immense amount of research has focused on 

machine learning in EEG-based systems. There are 

numerous applications for EEG-based machine 

learning. An important application is to use machine 

learning to identify and extract biomarkers from 

EEG for neurological disorders, such as Alzheimer’s 

disease [5], Parkinson’s disease [6], epilepsy and 

epileptic seizures [4], and dementia [7]. Other 

applications of machine learning in EEG include 

brain-computer interface (BCI) [8], sleep staging [5], 

drowsiness detection [6], estimation of depth of 

anesthesia [4], and microsleep detection and 

prediction [2]. Despite different applications, 

implementation of the machine learning procedure 

in these EEG systems follows similar steps as 

described in this chapter. For the rest of this section, 

we provide further details for two applications of 

machine learning in EEG. These are brain-computer 
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interface (BCI) and microsleep detection and 

prediction. References: 

Brain-Computer Interface  

A BCI system enables users to interact with their 

surrounding using brain activity [6]. BCI systems are 

of particular importance for people with severe 

disabilities, where BCI systems empower them to 

control their prosthetics and/or environment without 

using any muscles or peripheral nerves [5]. These 

systems commonly use EEG to record electrical 

activity of the brain because EEG is lowcost, has 

high temporal resolution, and has a low associated 

risk [4, 2]. One class of BCI systems focuses on 

motor imagery [2]. In this paradigm, a participant 

mentally simulates performing a series of 

movements. The aim of the BCI system is then to 

distinguish different types of movements using brain 

activity. Several studies have investigated motor 

imagery BCI and have achieved relatively 

acceptable performances (e.g., [5]). Using a similar 

concept, other systems have been developed to 

control robotic arms and unmanned aerial vehicles 

[6]. In these systems, a diverse range of feature 

extraction methods have been employed, including 

CSP [7], coefficients of wavelet transform [8], 

spectral features [159], convolutional neural 

networks [6], and autoencoder [1]. Additionally, a 

range of classifiers have been used to separate motor 

imagery tasks, such as LDA [7], SVM [4], kNN [8], 

ensemble classifier [6], naive Bayes [6], and deep 

neural networks [6]. P300 speller is another 

paradigm of BCI [4]. In the P300 speller, 

participants are presented with a table of characters 

where the intensity of one row or column is 

randomly increased. Participants are instructed to 

focus on the letter of interest, which randomly gets 

highlighted. This change in intensity produces a 

reaction in brain activity of the participant which 

happens approximately 300 ms after the letter is 

highlighted – i.e., P300. Using the P300 pattern, a 

BCI system can identify the letter of interest. The 

P300 speller paradigm has been widely studied in the 

literature and has achieved relatively good 

performances (e.g., [6]). Several classifiers have 

been used to identify the letter of interest in a P300- 

speller paradigm, such as LDA [8], SVM [9], deep 

neural networks [5], ensemble classifier [7], and 

random forest [3]. There are other BCI paradigms 

such as steady-state visual evoked potential 

(SSVEP), auditory, visual, and hybrid [2]. These 

paradigms have also been the subject of many 

studies (e.g., [8]). There are numerous studies 

investigating different BCI paradigms, and the 

number of publications is increasing. The findings of 

these studies show a promising future to improve 

quality of life for those who suffer from severe 

neurological and musculoskeletal disorders. 

Microsleep Detection and Prediction in Time  

The prediction of imminent microsleeps has also 

been the subject of several studies [8]. In these 

studies, selection of the EEG window corresponding 

to a microsleep state was done in a manner so that 

the EEG window preceded its corresponding 

microsleep state by a certain amount of time [5]. In 

terms of performance, microsleep detection and 

prediction systems have achieved relatively high 

AUC-ROC values (e.g., 0.95 [7]). However, the 

precision of these systems is relatively low (e.g., 

0.36 [8] and 0.42 [1] for microsleep prediction 0.25 

s ahead). One of the challenges associated with 

microsleep systems is that microsleep data has an 

inherently high class imbalance. Additionally, the 

class-imbalance ratio varies across individuals. This 

introduces complexity for training the system and 

evaluating its performance. 

Conclusion  

An immense amount of research has focused on 

EEG and its applications in medicine, neuroscience, 

rehabilitation, and other fields. Integration of the 

EEG and machine learning fields has provided a 

framework to develop accurate EEG-based 

predictive systems. Such advances have resulted in 

EEG-based BCI systems that can substantially 

improve the quality of life for those suffering from 

severe neural and neuromuscular disorders. In this 

chapter, we have provided an overview of machine 

learning algorithms for EEG-based systems. We 

divided the process into EEG data acquisition, 

preprocessing, feature extraction, feature reduction, 

classification, and performance evaluation. For each 

step, a brief summary was provided and potential 

challenges were discussed. However, the field of 

machine learning is vast, and therefore this chapter 

makes no attempt to review all of the existing 

literature. Instead, we have provided an overview of 

different steps that can be combined to develop an 

EEGbased predictive system. We consider that 

machine learning will play an increasingly important 

role in EEG-based systems and their applications. In 

particular, deep neural networks will become an 

increasingly popular choice to develop EEG-based 

systems. These methods provide a framework to 

benefit from both model-based and data-driven 

approaches, which requires minimal processing for 

EEG data. 
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