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1. Introduction 

There exist so many optimisation problems in 

various areas of science and engineering. For solving 

them, there exist twofold approaches; classical 

approaches and heuristic approaches. Classical 

approaches are not efficient enough in solving 

optimisation problems. Since they suffer from curse of 

dimensionality and also require preconditions such as 

continuity and differentiability of objective function 

that usually are not satisfied. 

Heuristic approaches which are usually bio-inspired 

include a lot of approaches such as genetic algorithms, 

evolution strategies, differential evolution and so on. 

Heuristics do not expose most of the drawbacks of 

classical and technical approaches. Among heuristics, 

particle swarm optimisation (PSO) has shown more 

promising behavior. 

PSO is a stochastic optimisation technique 

introduced by Kennedy and Eberhart (Kennedy & 

Eberhart, 1995). It belongs to the family of swarm 

intelligence computational techniques and is inspired of 

social interaction in human beings and animals. 

Some PSO aspects that make it potent in solving 

optimisation problems are the followings: 

 In comparison with other heuristics, it has less 

parameters to be tuned by user. 

 Its underlying concepts are so simple. Also its 

coding is so easy. 

 It provides fast convergence. 

 It requires less computational burden in 

comparison with most other heuristics. 

 Roughly, initial solutions do not affect its 

computational behavior. 

 Its behavior is not highly affected by increase in 

dimensionality. 

However, basic PSO variants are merely applicable 

to static optimisation problems while many real-world 

optimization problems are dynamic. Therefore, for 

solving dynamic problems, typical PSO variants should 

be modified. In this paper the challenges of dynamic 

environments are introduced and various PSO variants 

specially designed for dynamic problems are analysed. 

The paper is organised as follows; in section 2, an 

overview of PSO is presented. In section 3, existent 

PSO variants are analysed. Finally, drawing 

conclusions and proposing some directions for future 

research in this area is presented in section 4.  

 

2.   Basic Concepts and Variants of PSO  

PSO is launched with the random initialisation of a 

swarm of particles in the n-dimensional search space (n 

is the dimension of problem in hand). The particles fly 

over search space with adjusted velocities. In PSO, 

each particle keeps two values in its memory; its own 

best experience, that is, the one with the best fitness 

value (best fitness value corresponds to least objective 

value since fitness function is conversely proportional 

to objective function) whose position and objective 

value are called Pi and Pbest  respectively and the best 

experience of the whole swarm, whose position and 

objective value are called Pg and gbest respectively. Let 

denote the position and velocity of particle i with the 

following vectors:  

 

Xi = (Xi1, Xi2, … , Xid, … , Xin) 

  

Vi = (Vi1, Vi2, … , Vid, … , Vin) 
 

The velocities and positions of particles are updated 

in each time step according to the following equations: 
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Vid(t + 1) = Vid (t) + C1 r1d(Pid − Xid)+C2r2d(Pgd −

Xid)      (1) 

                                                              

Xid(t + 1) = Xid (t) + Vid (t + 1)               (2) 
 

Where C1 and C2  are cognitive and social 

acceleration coefficients respectively and r1d  and r2d 

are two random numbers with uniform distribution in 

the interval [0,1].  

 

The procedure for implementation of PSO is as 

follows: 

1) Particles’ velocities and positions are Initialised 

randomly, the objective value of all particles are 

calculated, the position and objective of each 

particle are set as its 𝑃𝑖  and 𝑃𝑏𝑒𝑠𝑡  respectively and 

also the position and objective of the particle with 

the best fitness (least objective) is set as Pg  and 

gbest respectively. 

2) Particles’ velocities and positions are updated 

according to equations (1) and (2). 

3) Each particle’s Pbest  and Pi are updated, that is, if 

the current fitness of the particle is better than its 

Pbest , Pbest  and Pi  are replaced with current 

objective value and position vector respectively. 

4)  𝑃𝑔  and  𝑔𝑏𝑒𝑠𝑡  are updated, that is, if the current 

best fitness of the whole swarm is fitter than 𝑔𝑏𝑒𝑠𝑡 ,  

𝑔𝑏𝑒𝑠𝑡  and 𝑃𝑔  are replaced with current best 

objective and its corresponding position vector 

respectively. 

5) Steps 2-4 are repeated until stopping criterion 

(usually a prespecified number of iterations or a 

quality threshold for objective value) is reached. 

It should be mentioned that since the velocity update 

equations are stochastic, the velocities may become too 

high, so that the particles become uncontrolled and 

exceed search space. Therefore, velocities are bounded 

to a maximum value 𝑉𝑚𝑎𝑥 , that is (Eberhart, Shi, & 

Kennedy, 2001) 

 

If |Vid| > Vmax then Vid = sign(Vid)Vmax              (3) 
     

Where sign represents sign function. 

However, primary PSO characterised by (1) and (2) 

does not work desirably; especially since it possess no 

strategy for adjusting the trade-off between explorative 

and exploitative capabilities of PSO. Therefore, the 

inertia weight PSO is introduced to remove this 

drawback. In inertia-weight PSO, which is the most 

commonly-used PSO variant, the velocities of particles 

in previous time step is multiplied by a parameter 

called inertia weight. The corresponding velocity 

update equations are as follows (Shi & Eberhart, 1998; 

Shi & Eberhart, 1999) 

 

Vid(t + 1) = ωVid (t) +

C1 r1d(Pi-Xid)+C2r2d(Pgd-Xid)                

               

𝑋𝑖𝑑(t + 1) = Xid (t) + Vid (t + 1)            (4)                                   

 

Inertia weight adjusts the trade-off between 

exploration and exploitation capabilities of PSO. The 

less the inertia weight is, the more the exploration 

capability of PSO will be and vice versa. Commonly, it 

is decreased linearly during the course of the run, so 

that the search effort is mainly focused on exploration 

at initial stages and is focused more on exploitation at 

latter stages of the run.      

3.  PSO for Dynamic Environments 

Many real-world optimization problems are 

dynamic, that is, their objective function and/or 

constraints vary over time. The general representation 

of a dynamic optimization problem (DOP) is: 

 

Minimize f(X, t)  
 

Subject to  g(X, t) ≤ 0 

 

In DOPs due to the change of objective functions or 

constraints, the position and value of optima varies 

over time. The role of optimization technique is to 

track the changing optimum/optima. If the change in is 

radical, the best option is to implement optimization 

process from scratch (Branke, 2002). However, in most 

practical instances, the changes are gradual. If this is 

the case, it is possible to speed up optimization after an 

environmental change via utilising some of the 

information gathered during the optimisation so far.  

There are two main difficulties that should be 

addressed in DOPs: 

1. Outdated memory: When the environment 

changes, previously good solutions may no longer 

be good and mislead the swarm towards false 

optima. This issue is more acute when the 

environment change is severe. 

2. Diversity loss: If the environment changes when 

the new optimum is within the collapsing swarm, it 

is expected that new optima can be traced 

successfully and promptly. However if the new 

optimum is outside the swarm’s expansion, 

particles’ low velocities inhibit re-diversification 

and the swarm may even oscillate around a false 

attractor in a phenomenon called “linear collapse.” 

So, the new optimum is difficult to be traced. 

3.1 Addressing Challenges in DOP’s 

For addressing the challenges in dynamic 

environments, three following crucial actions should be 

undertaken: 

http://www.jofamericanscience.org/
http://www.jofamericanscience.org/
mailto:editor@americanscience.org


Journal of American Science 2024;20(2)                              http://www.jofamericanscience.orgJAS 

 

http://www.jofamericanscience.org                                                           editor@americanscience.org  
 

33 

3.1.1 Detecting Change 

In many applications, the time of change occurrence 

is known to the system. Otherwise, it should be 

detected. Change detection strategy should efficiently 

detect the change and trigger “response mechanism.” In 

(Richter, 2009b), two major types of change detection 

mechanisms, that is, population-based and sensor-

based mechanisms have been introduced. In 

population-based approach, the fitness evaluations of 

the population is used, while in the latter approach, 

additional measurement of the landscape’s fitness on 

prescribed points is utilised.  

In population-based approach, the sets S(t)  and 

S(t + 1) are formed consisting of fitness functions of 

individuals at iterations t and t + 1 respectively. Then 

the change detection problem is transformed into the 

problem of testing whether the data set S(t)  and 

S(t + 1) are coming from different distributions or not. 

For judging about this, a statistical hypothesis testing 

method is applied. 

On the other hand, sensor-based approach is based 

on implementing additional measurements in the 

fitness landscape using “fitness landscape sensors.” If 

any of the sensors detects an altered fitness value, the 

change is considered to be occurred. The advantage of 

this approach in comparison to population-based 

approach is that it does not need elaborated statistical 

analysis and there can be no false positives. However, 

additional fitness evaluation is required. 

In (Richter, 2009a), artificial immune system is 

applied for change detection. A negative selection 

algorithm has been used to decide on whether or not 

the fitness landscape has changed. This is solely done 

with fitness information from the population on a 

sample base. Also in (Richter & Dietel), a change 

detection strategy for constrained environments has 

been put forward. 

Despite all above-mentioned efficient change 

detection strategies, in dynamic PSO literature, change 

detection is usually done by re-evaluating one or more 

personal bests, and if the fitness value of at least one of 

them has changed, the change occurrence is concluded. 

In this paper, during the explanation of various PSO 

variants for dynamic environments, the change 

detection schemes adopted in them will be also 

explained.   

3.1.2 Memory Update 

For solving “outdated memory” problem, commonly 

either re-evaluating or forgetting the memory is used. 

In the latter, each particle’s memory is set to the 

particle’s current position and the global best is 

updated such that Pg = arg min f(Pi). 

3.1.3 Diversity Enhancement 

Diversity loss is considered as the most challenging 

issue in DOPs. For solving it, either a diversity-

enhancement mechanism should be invoked at change 

(or at pre-determined intervals), or sufficient diversity 

has to be ensured at all times. There are four principle 

mechanisms for diversity-enhancement: re-

diversification, repulsion, multi-populations and 

dynamic neighborhood topology. 

3.2 Common Benchmarks and Metrics in DOP 

Literature 

Now, before explaining various PSO variants for 

DOP’s, benchmarks and metrics that are commonly 

used in specialised DOP literature, are introduced. 

3.2.1 Moving Peaks Benchmark (MPB) 

These benchmarks that somehow represent real-

world dynamic optimization problems are commonly 

used in the specialised literature. In MPB problems, the 

optima can vary in three terms; the height, width and 

location of peaks. MPB is defined as (Branke, 1999): 

 

F(X, t)

= Max 
Hi(t)

1 + Wi(t) ∑ (Xd(t) − Xid(t))
2n

d=1

    for i

= 1, … , p        (5) 
 

Where Hi(t) and Wi(t) are the height and width of  

peak i at time t, respectively. Xid(t) represents the dth 

dimension of position vector  of peak i at time t  and p 

denotes the number of peaks. The position of each peak 

is shifted in a random direction as proceeds: 

 

Xi(t) = Xi(t − 1) + Vi(t) 

 

Vi(t) =
s

|r + Vi(t − 1)|
((1 − λ)r + λVi(t − 1))      (6) 

 

Where  Vi(t)  is called shift vector and is a linear 

combination of a random vector r  and the previous 

shift vector Vi(t − 1). 𝜆 is called correlation factor and 

indicates the level of correlation between two 

successive environmental changes. The final parameter 

is U  and represents that the environment change 

happens every U  function evaluations. 

3.2.2 Performance Metric 

For gauging the performance of a dynamic 

optimization technique, commonly a metric called 

“offline error” is used which is defined via: 

 

e =
1

K
∑(hK − fK)                           (7)     

K

K=1

 

 

Where fK is the best solution obtained just before the 

kth environmental change and hK is optimum value of 

the k th environment. K  is the total number of 

environmental changes. 
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3.3 Classification of PSO Variants Adapted for 

DOP’s 

Here, due to the importance of diversity-

enhancement strategies, all different variants for DOPs 

are classified according their diversity-enhancement 

schemes. According to this criterion, most of them are 

classified into following main groups.  

3.3.1 Repulsion-based Variants 

A constant degree of swarm diversity can be 

maintained at all times through some type of repulsive 

strategies. One repulsive strategy is to use charged 

particles in swarm wherein diversity is maintained by 

coulomb repulsion among particles. In one type, called 

charged PSO, all swarm particles are charged while in 

second type, called atomic PSO, just some particles are 

charged and others are neutral particles. Charged 

particles through diversity enhancement help PSO to 

trace new optimum (Blackwell, 2003; Blackwell & 

Branke, 2004; T. M. Blackwell & P. Bentley, 2002; T. 

M. Blackwell & P. J. Bentley, 2002). In (T. M. 

Blackwell & P. J. Bentley, 2002), the performance of 

conventional PSO, charged PSO and atomic PSO in 

tackling with DOP’s are evaluated and experiments 

have proved the superiority of atomic PSO over 

conventional and charged PSO’s while in (Blackwell, 

2003), dynamic environments, by categorising dynamic 

problems into three types according to their severity, 

for each type one variant among conventional, charged 

and atomic PSO is recommended. 

In (Blackwell & Branke, 2004) and (Blackwell & 

Branke, 2006; Sun, Lai, Xu, & Chai, 2007; Sun, Xu, & 

Fang, 2006; Zhao, Sun, Chen, & Xu, 2009), the 

charged particle idea has been simplified to the 

quantum particle. Quantum particles are re-positioned 

in each iteration within a hypersphere of rcloud 

centered on the 𝑃𝑔 according to a specified probability 

distribution, that is quantum particles do not move 

according to PSO’s regular update equations. In (Sun, 

et al., 2007), the center of position distribution is the 

personal best of a randomly selected particle instead of 

Pg  and in (Sun, et al., 2006), a mutation operator is 

exerted on gbest  to enhance diversity further. In 

literature, various probability distributions including 

Gaussian, uniform volume and non-uniform volume 

are used for quantum particles. In comparison with 

charged particles, quantum particles behave better 

thanks to lower complexity and easy controllability. 

3.3.2 Re-randomisation-based Variants 

In (Hu & Eberhart, 2002), for responding to the 

change, re-randomisation of part or whole of the 

swarm, and re-randomisation of  gbest and resetting the 

whole particles are tested. The experiments show that 

lower re-randomization rates outperform higher re-

randomization rates when change severity is low and 

there is no significant difference when the change 

severity is high. 

For change detection, in contrary to “changed-gbest 

value” method in (Hu & Eberhart, 2001), “fixed-gbest 

value” method is used wherein the gbest value and the 

second gbest value are monitored. If they do not change 

during a certain number of iterations, it is concluded 

that the change has occurred. 

Two drawbacks of this variant are that the algorithm 

is strongly sensitive to the number of iterations which 

gbest should be fixed and the technique just has been 

tested on some simple test functions. 

3.3.3 Dynamic Neighborhood Topology-based Variants 

In (Janson & Middendorf, 2004) and (Janson & 

Middendorf, 2006), hierarchical PSO and also its 

extension called partitioned hierarchical PSO (PH-

PSO) have been applied to the DOP’s in the hope that 

these variants due to their dynamic neighborhood 

topology would be more compatible with dynamic 

environments. In PH-PSO, after change detection 

which is done by changed- 𝑔𝑏𝑒𝑠𝑡  value method, the 

hierarchy is partitioned into a set of sub-hierarchies or 

sub-swarms. These sub-swarms continue to search for 

the optimum independently. After a certain number of 

iterations, the subswarms are re-unified by connections 

of the hierarchy that have been cut. In a more extended 

variant called adaptive PH-PSO, the number of these 

iterations is adapted. In (Janson & Middendorf, 2006), 

a new change detection strategy called “hierarchy 

monitoring strategy” is proposed.  In this strategy, at 

each iteration, the total number of swaps is measured 

and if it exceeds a certain threshold, the change is 

considered to have occurred. The rationale behind this 

is that when change occurs, the number of particles 

swapped between nodes of tree drastically increases. 

The advantage of this strategy is that it does not need 

additional function evaluations. The experiments reveal 

that PH-PSO outperforms H-PSO and conventional 

PSO. 

Nevertheless, besides the above-mentioned dynamic 

neighborhood topologies, some static topologies have 

also been utilised for tackling DOP’s. In (Xiaodong & 

Hoa, 2003), in a variant named fine-grained PSO, Von-

Neumann neighborhood topology is adopted wherein 

each particle is neighboured to the four particles in its 

four sides. This neighborhood topology provides 

slower information propagation in comparison to gbest 

PSO, leading to higher diversity level that prompts 

superior performance in dynamic environments. The 

experiments strongly approve its superiority. 

Furthermore, in (Zheng & Liu, 2009), the swarm is 

partitioned into two subswarms; G-subswarm with a 

gbest  neighborhood topology responsible for finding 

new optima and L-subswarm with a lbest neighborhood 

topology responsible for compensating the diversity 

loss.  The two subswarms exchange their best particles 

in some checkpoints. Also a mutation operator is 

applied to 𝑔𝑏𝑒𝑠𝑡  to ensure enough diversity.  
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3.3.4 Multi-Swarm Variants 

In these variants, the swarm is partitioned into a 

number of subswarms with the aim to position each 

subswarm on a different promising peak of the 

landscape. Here, in addition to multi-swarm concept, 

three following diversity operators are adopted 

(Blackwell & Branke, 2006; Blum, Merkle, Blackwell, 

Branke, & Li, 2008). 

 

1. Quantum or charged particles: Diversity loss 

incurred by environmental change is 

counterbalanced by using charged or quantum 

particles. In charged multi-swarm PSO, consisting 

of neutral and charged particles, diversity is 

maintained by coulomb repulsion among charged 

particles while in Quantum multi-swarm PSO, 

consisting neutral and quantum particles whereas 

the quantum particles are randomised within a ball 

of radius rcloud  centered on the subswarm 

attractor.  

2. Anti-convergence: When the number of 

subswarms is less than the number of peaks, some 

peaks are not covered and if those peaks become 

the optima after environmental change, cannot be 

easily tracked. Therefore, whenever all subswarms 

have converged, that is, when their neutral swarm 

size gets less than convergence radius, rconv, anti-

convergence operator expels the worst sub-swarm 

from its peak and reinitialises it in the search 

space. Therefore, at each time, there is at least one 

subswarm patrolling search space for new peaks. 

3. Exclusion: When the attractor of two subswarms 

are within an exclusion radius, rexcl, the subswarm 

with worse objective function is expelled and 

reinitialised in the search space. Indeed exclusion 

is a local interaction between colliding swarms, 

preventing them from settling on the same peak, or 

in words, it maintains inter-subswarm diversity. 

 

The experiments on benchmark functions show that 

the above-mentioned multi-swarm PSO behaves well 

but its main issue is the large number of the parameters 

that are difficult to be set. The number of sub-swarms, 

the number of quantum particles, quantum cloud radius 

(or charge in charged multi-swarms), exclusion 

distance and convergence radius are the parameters that 

should be tuned. 

 

4. Conclusions and future research directions 

PSO has demonstrated desirable performance in 

solving dynamic optimisation problems. In this paper 

PSO variants devised for dynamic problems are 

analysed. Based on conducted analysis, the followings 

are proposed as some directions for future research in 

this area. 

 

 Applying other diversity enhancement 

mechanisms such as various mutation forms, self-

organised criticality, prey and predator scheme, 

comprehensive learning scheme and dissipative 

strategy may lead to more superior outcomes in 

dynamic environments and is recommended. 

 While theoretical analysis on PSO in dynamic 

environments may lead to deeper understanding in 

this area, it has not been conducted yet and is 

recommended for future research. 
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