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Abstract: The effects of deformation on electronic heat capacity of different elemental metals were computed and 
studied based on Einstein model formalism. The electron density parameters of deformed metals under the 
application of different strains were obtained for different metals. The poison ratio relating the transversal 
compression to elongation in the direction of applied deformation for different elemental metals were computed base 
on elastic moduli for homogeneous isotropic material and used in this work. The results obtained revealed that there 
is a good agreement between the computed and experimental values of electronic heat capacity of metals. This 
shows that Einstein model can be used in the theoretical prediction of heat capacity of metals. The result obtained 
revealed that the electronic heat capacity of metals are more concentrated in the high density region than the low 
density region. This seems to suggest that the electronic heat capacity of metals depend on the electronic 
concentration. Also, the experimental value of electronic heat capacity is higher than the computed value, this could 
be due to some factors that the electronic heat capacity of metals depend upon that the model does not take into 
consideration. The result obtained shows that the electronic heat capacity of metals increases as the temperature 
increases. The electronic heat capacity of all the metals increases with an increase in deformation (strain). This could 
be due to the fact that as deformation increases, the collision between the interacting electron increases which forces 
the mean atomic velocity, amplitude of atomic vibration and electron thermal excitation to increase and there by 
result in the increase in the electronic heat capacity of the metals as deformation increases. 
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Introduction 

Solid consists of a sufficiently large collection of 
atoms that exhibit the characteristic behavior of bulk 
material, the atom may lose some of its tightly bound 
electrons leaving the core electrons, such entity is 
known as ions (Rogalski and Palmer, 2000). Solid as 
an ensemble of independent quantum harmonic 
oscillators vibrating at a frequency which depends on 
the strength of the restoring force acting on the atom 
(Kittel, 1976). At a finite temperature, the atoms that 
form a crystalline lattice vibrate about their 
equilibrium positions with amplitude that depends on 
the temperature, these vibrations can be analyzed in 
terms of collective modes of motion of the ions. When 
an atom vibrates, the force on adjacent atoms changes 
causing them to vibrate (and vice-versa) (Efthimios, 
2003). Crystal lattice dynamics can be discussed in the 
frame of the adiabatic approximation by solving 
Hamiltonian operator for the motion of the ions about 
their equilibrium position which defines the lattice 
spatial distribution. Lattice vibrations can be described 
in terms of waves propagating along a linear chain, 
such that the amplitude of the vibration for the atom is 
equal in the Debye approximation, a linear lattice can 
sustain long wavelength elastic waves which 
propagate without dispersion (Rogalski and Palmer, 
2000). Fermi-Dirac statistics gives satisfactory 

calculation of the electronic contribution to the 
specific heat of metals and the Debye theory 
expression is obtained from the total internal energy of 
the valence electron gas at any temperature (Animalu, 
1977). Electronic specific heat is the contribution to 
total specific heat due to transitions of electrons to 
state of higher energy. Debye temperature is one 
important factor in the discussion of many physical 
properties such as elastic constants, electrical 
conductivity and x-ray diffraction. The thermal 
properties of solid depend on energy change of the 
atoms and free electrons (Pillai, 2010). The specific 
heat at constant volume is the change in internal 
energy with temperature. (Elliot,1997). We can also 
think about the number of degrees of freedom as the 
number of ways to absorb energy. The theorem of 
equipartition of energy (classical mechanics) states 
that in thermal equilibrium the same average energy is 
associated with each independent degree of freedom. 
The equality of kinetic and potential energy in 
harmonic approximation is addressed by the virial 
theorem of classical mechanics (Kittel, 1976). 
Contributions to the heat capacity can be considered 
classically only if En ~ hν << KBT. Energy levels with 
En ≥ kBT contribute little to the heat capacity. For a 
quantum harmonic oscillator the Einstein-Bose 
statistics must be applied and the statistical 
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distribution of energy in the vibrational states gives 
the average energy (Madelung, (1995). In the Einstein 
model for the thermal heat capacity one considers only 
phonons at one frequency, an approximation for 
optical phonons. Heat capacity of gas, solid or liquid 
tends to increase with temperature, due to the 
increasing number of excited degrees of freedom, 
requiring more energy to cause the same temperature 
rise. In discussing specific heats, there is one big 
difference between the one-dimensional case and the 
three-dimensional case. In the one-dimensional case, 
the dispersion relation is known exactly (for nearest-
neighbor interactions) and from it the density of states 
can be exactly computed. In the three-dimensional 
case, the dispersion relation is not known, and so the 
dispersion relation of a classical isotropic elastic 
continuum is used instead. From this dispersion 
relation, a density of states is derived. Generally, this 
density of states curve does not compare very well 
with the density of states used in the Debye 
approximation. The reason the error is not serious is 
that the specific heat uses only an integral over the 
density of states (Patterson and Bailey, 2010). 
Deformation is the change in the shape or size of an 
object during stress or strain. The study of the elastic 
behaviour of a solid is very important in the 
fundamental and technical researches. In technology, 
it tells us about the strength of the materials. In 
fundamental research, it is of interest because of the 
insight it provides into the nature of the binding forces 
in solids. The relevant elastic constants also relate 
themselves to thermal properties like Debye 
temperature. The elastic properties of a homogenous 
crystal are generally anisotropic. In a cubic crystal, the 
relationship between stress and strain depends on the 
orientation of the crystal axes relative to stress system 
(Kachhava, 1992). Because of the anisotropy of a 
crystal, the atoms of any crystal can be deformed in a 
variety of ways that can be decomposed into three 
types of independent deformations viz, uniform 
compression associated with the bulk modulus or 
compressibility and two shears in both of which the 
volume is unchanged (Animalu, 1977). 
Mathematically, any lattice deformation can be 

characterized by a second-rank tensor , called a 
strain tensor which has three independent components 
in a system with cubic symmetry (Animalu, 1977). 
Consequently, a lot of efforts have been made to study 
the effect of deformation on some properties of metals 
theoretically and experimentally. Kiejna and Pogosov 
(1999) performed an experimental investigation on the 
effect of deformation on some electronic properties of 
metals by taking the direct measurement of deformed 
metal using Kelvin method. They observed that the 
contact potential difference of the metals increase 

when compressed and decreases when tensed. 
Pogosov and Shtepa, (2006), calculated the surface 
stress and the contact potential difference of elastically 
deformed metals based on structureless 
pseudopotential model using self-consistent Kohn 
Sham method. The results of surface stress obtained 
were in agreement with experimental results, and also 
confirmed that the contact potential difference 
obtained for the deformed metallic surfaces by Kelvin 
method correspond to change in surface potential. 
Adeshakin and Osiele (2012) computed the surface 
energy and surface stress of deformed metals based on 
the structureless pseudopotential formalism. The 
results obtained revealed that deformation causes a 
reduction of surface energy and this reduction is more 
pronounced in simple and alkaline metals. Tensile 
stress is present in most metallic surfaces whose 
surface stress were computed, although a few metals 
possess compressive stress on their surfaces. In the 
presence of deformation, the surface stress of some 
metals decreases, while deformation causes an 
increase in the surface stress of some metals. 
Adeshakin et al. (2012), developed a model based on 
the structureless pseudopotential to compute the 
correlation, binding and cohesive energy of deformed 
and undeformed metals. The computed binding and 
cohesive energy of metals were compared with 
available experimental values. The results obtained 
showed that correlation energy increases with increase 
in electron density parameter. The computed binding 
energy and cohesive energy of metals were in good 
agreement with experimental values. The results 
obtained also showed that deformation causes a 
decrease in the binding energy of metals and it does 
not cause a significant change in the cohesive energy 
of metals, although transition metals have high values 
of cohesive energy compared to alkaline and simple 
metals. Adeshakin et. al (2015) investigated the linear 
deformation and the electronic properties of metals 
based on the modified structureless pseudopotential 
model to compute and study the effects of deformation 
on the electron density parameter, Fermi energy, 
Fermi wave vector and chemical potential of different 
metals. The results obtained revealed that increase in 
deformation causes an increase in electron gas 
parameter, and decrease in Fermi wave vector, Fermi 
energy and chemical potential of metals. In this work, 
Einstein model is extended to the study of the 
electronic heat capacity of deformed elemental metals 
consisting of monovalent, divalent, trivalent and 
polyvalent metals, and the result obtained were 
compared with available experimental values and 
results obtained using other method of calculation. 
This will provide an insight into how the electronic 
heat capacity of metals varies with deformation. The 
metals used in this study were chosen based on the 
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availability of experimental data, their industrial and 
technological applications and the availability of some 
physical constants of metals that is required for 
computation. 

 
2.0 Theoretical Consideration 

Considering a hypothetical crystal in the shape of 
a rectangular parallelepiped. In the undeformed state 
all of its faces are equivalent. Assume that 
deformation is a measured quantity and a metallic 
crystal to be considered as assembled from a number 
of simple crystallites. Express the average electron 
density in a metal as a function of deformation. 
Express the average electron density in a metal as a 
function of deformation for this purpose, consider a 

cubic cell of the side length oa
and volume (Kiejna 

and Pogosov, 1999). 

3 3
0 0 0

4

3
a r  

 (1) 

where or  is the radius of the Wigner-Seitz cell 

given as 

1

3
0 sr z r

 where sr  is the electron density 
parameter of undeformed metal defined as the radius 
of sphere containing one electron on average and a 
measure of the average distance between electrons. rs 
is defined as  

1 3
3

4
sr n

 
  
   (2) 

where n is the electronic density of undeformed 
crystal. For a cubic cell deformed by applying an 
elongative force along the x-axis, the volume of the 
deformed cell is  
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3
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 (3) 
where ax, ay =az are the sides of the deformed 

cubic cell. If the uniaxial strain is uxx, then 
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where  is the polycrystalline Poisson ratio that 
relates the transversal compression to the elongation in 
the direction of the applied deformation that is 

yy zz xxu u u  
 

The ratio of the unit volume of the deformed 
cubic cell to that of the undeformed cell is 
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 (6) 
Neglecting higher order terms of the uniaxial 

strain, then (Kiejna and Pogosov, 

1999) 0

1d
xx yy zzu u u


   


 (7) 

From equation (4), then for the deformed cube,  

0 (1 )xxa r u 
 

0 (1 )xxb r u 
 

In the same vane, the lattice spacing in the planes 
perpendicular to the y or z direction is 

0 (1 )u xxd d u 
 

where d0 is the interplanar spacing in an 
undeformed metal given as 

0 2 2 2

a
d

h k l


   (8) 
where h, k and l are the Miller indices of the 

plane. 
The average electron density in the deformed 

metal is 
3
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 (9) 
The electron gas parameter of the deformed 

metal is obtained from its volume as 
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Neglecting higher order terms in the strain or 
deformation, we have (Kiejna and Pogosov, 1999). 

1 3
0 (1 (1 2 ))su xxr r u   

 (10) 
The electron gas parameter of deformed metals, 

rsu gives the mean inter electronic distance in a 
deformed metal (Kiejna and Pogosov, 1999). 

The number of states in the blackbody radiation 
with frequency between  and +d is  

  (11) 

Where  gives the number of oscillatory 

modes in the frequency range  corresponding to the 
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energy range dE, V is the volume and c is the speed of 
light. 

For the elastic transverse waves and the 
longitudinal waves we have 

   (12) 
And 

   (13) 

Where  is the velocity of the transverse wave 

and  is the velocity of the longitudinal wave. The 
total number of vibrational modes in the frequency 

range  is 

   (14) 
Substituting equation (12) and (13) into equation 

(14) we have 

  (15) 
In a continuous medium, there is no limit to the 

total number of vibrational modes. But in solis that has 
an atomic structure and contain N atoms, any 
vibrational mode must be described in terms of 3N 
positional coordinates of the atoms. This therefore 
imposes a limit on the total number of independent 
modes of freedom which must be equal to 3N. where 
N is the number of atoms in a monoatomic 
homogeneous solid. This imposes a limit on the 
maximum vibrational frequency. Using equation (15)  

  (16) 
Putting equation (15) into equation (16) we have  

  (17) 

  (18) 
Therefore,  

   (19) 
By substituting equation (19) into equation (15) 

we have 

 (20) 
Photons are associated with the vibrational 

modes of solids, in thermal equilibrium photons obey 
Bose-Einstein statistics. 

 (21)  
Equation (21) is the number of photons of energy 

 in the frequency range between  and +d 

and in thermal equilibrium with the solid lattice at 
temperature T. The total vibrational energy of the solid 
in the frequency range d is  

 (22) 
The total vibrational energy of solid is obtained 

by integrating equation (23), then we have  

  (23) 
The heat capacity at constant volume is given by  

 
 (24) 

Where, n is the number of mole,  is the 

Avogadro number,  is the normalized Planck’s 
constant, K is the Boltzmann constant, T is the 
temperature and h is the Planck’s constant. In this 
work, the electronic heat capacity of deformed metals 
for monovalent, divalent, trivalent and polyvalent 
metals were computed using equation (24) and how 
deformation affects the electronic heat capacity of 
metals is also studied.  

 
3.0 Results And Discussion 

Figure 1 shows the variation of the electronic 
heat capacity with electron density parameter for 
different elemental metals containing group one, group 
two, group three, noble and transition metals. The 
experimental values used in these work is obtained 
from solid state physics by pillai 2010. The 
experimental value of the electronic heat capacity 
seems not to exhibit a particular trend unlike the 
computed value that seems to exhibit a linear trend. 
Figure 1 shows that at 1.2 < rs <3.0 a.u, the computed 
electronics heat capacity of some metals is in good 
agreement with experimental value, although the 
experimental values is higher than the computed 
values for most of the metals. The discrepancy 
between the computed and experimental value of the 
electronic heat capacity could be due to the fact that 
there are some factors which the electronic heat 
capacity depend upon that the model does not take into 
consideration such as packing density, vibration of 
atoms around their equilibrium position, degree of 
freedom, atomic lattice and the crystalline architecture 
of the metals. The trend exhibited by metals in figure 1 
revealed that almost all the metals have their 
electronic heat capacity concentrated in the high 
density region. This seems to suggest that the 
electronic heat capacity of metals strongly depend on 
the electronic concentration. Figure, 2 shows the 
variation of electronic heat capacity with temperature 
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for different elemental metals containing monovalent, 
divalent, trivalent and polyvalent metals. Figure 2 
revealed that the electronic heat capacity of metals 
increases as temperature increases. This could be due 
to the fact that the electrons in metals scattered more 
frequently by lattice vibrations which forces the 
electronic heat capacity to increase as the temperature 
increases. The trend exhibited by metals in figure 2 
can also be due to the fact that as the temperature 
increases, the degree of freedom among the interacting 
electron also increases which result in the increase in 
the electronic heat capacity of the metals. Figure 2 
revealed that potassium has the highest electronic heat 
capacity among all the metals whose electronic heat 
capacity were computed for different temperature this 
could be due to the high valence electron density and 
free conduction electron in them. Figure 3 shows the 
variation of electronic heat capacity with strain for 
different elemental metals of different group. Figure 3 
revealed that the electronic heat capacity of all the 
metals increases with an increase in deformation 
(strain). This could be due to the fact that as 
deformation increases, the collision between the 
interacting electron increases which forces the mean 
atomic velocity, amplitude of atomic vibration and 
electron thermal excitation to increase and there by 
result in the increase in the electronic heat capacity of 
the metals as deformation increases. The trend 
exhibited by metals in figure 3 also revealed that 
metals in the high density region have low electronic 
heat capacity while metals in the low density region 
has high electronic heat capacity for all the metals 
subjected to different deformation. This seems to 
suggest that in the high density region the rate at 
which the electron scattered and the temperature 
between the interacting atoms during deformation is 
low compared to the metals in the low density region. 
The trend exhibit by metals in figure 3 could also be 
due to the fact that metals in the high density region 
has low degree of freedom while metals in low density 

region has high degree of freedom. Figure 3 also 
revealed that potassium has the highest deformed 
electronic heat capacity while molybdnum and 
tunasten has the lowest deformed electronic heat 
capacity among all the metals subjected to different 
deformation. This could be due to the high electronic 
concentration and high valence electron density in the 
alkaline metals that makes it to be highly affected by 
deformation. The trend exhibited by different metals 
in figure 3 shows that the electronic heat capacity of 
metals is highly affected by deformation. 
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Figure 1: Variation Of Electronic Heat Capacity 
With Electron Density Parameter 
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Figure 2: Variation Of Electronic Heat Capacity 
With Temperature 
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Figure 3: Variation Of Electronic Heat Capacity With Deformation For Some Metals 

 
Conclusion 

In this work, a generalized approach for 
computing and studying the effect of linear 
deformation on electronic heat capacity of metals 
based on the Einstein model formalism is presented. 
The results obtained for the electronic heat capacity of 
undeformed metals were in good agreement with the 
experimental values which shows that Einstein model 
can be used in the theoretical prediction of heat 
capacity of metals. The computed and experimental 
value of the electronic heat capacity of undeformed 
metals are more concentrated in the high density 
region than the low density region. This seems to 
suggest that the higher the valence electron density in 
metals the higher the electronic heat capacity and the 
lower the valence electron density in metals the lower 

the electronic heat capacity of the metal. The 
electronic heat capacity of metals increases as 
temperature increases. This could be due to the fact 
that as the temperature increases the electrons in 
metals scattered more frequently due to lattice 
vibrations which forces the electronic heat capacity to 
increase as the temperature increases. The electronic 
heat capacity of all the metals increases with an 
increase in deformation (strain). This could be due to 
the fact that as deformation increases, the collision 
between the interacting electron increases which 
forces the mean atomic velocity, amplitude of atomic 
vibration and electron thermal excitation to increase 
and there by result in the increase in the electronic 
heat capacity of the metals as deformation increases. 

 
Table 1: Electronic Heat Capacity of Deformed Metals (J/kg-K) 

   Strain 
Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
K 4.96 0.240 0.265 0.290 0.315 0.340 0.365 0.390 0.414 0.440 
Cu 2.67 3.805 4.204 4.603 5.001 5.398 5.794 6.190 6.586 6.981 
Ag 3.02 5.486 6.062 6.636 7.210 7.782 8.354 8.924 9.495 0.101 
Be 1.87 1.321 1.460 1.600 1.736 1.874 2.012 2.149 2.287 2.424 
Mg 2.65 3.721 4.112 4.501 4.696 5.084 5.472 5.860 6.247 6.633 
Cr 1.86 1.300 1.437 1.573 1.709 1.845 1.980 2.116 2.251 2.386 
Fe 2.12 1.918 2.119 2.320 2.520 2.721 2.921 3.120 3.320 3.519 
Ni 2.07 1.787 1.974 2.161 2.348 2.535 2.721 2.907 3.092 3.278 
Zn 2.31 2.475 2.735 2.994 3.252 3.511 3.769 4.026 4.283 4.540 
Cd 2.59 3.477 3.841 4.205 4.569 4.931 5.294 5.655 6.017 6.377 
Al 2.07 1.787 1.974 2.161 2.348 2.535 2.721 2.907 3.092 3.275 
Bi 2.25 2.289 2.530 2.769 3.008 3.247 3.485 3.723 3.961 4.199 
Ti 1.92 1.429 1.579 1.729 1.878 2.027 2.176 2.325 2.473 2.622 
Y 2.61 3.557 3.930 4.302 4.674 5.045 5.416 5.786 6.156 6.519 
Sn 2.22 2.199 2.430 2.661 2.890 3.120 3.350 3.578 3.806 4.035 
Pb 2.30 2.443 2.700 2.955 3.211 3.466 3.720 3.975 4.228 4.482 
Mo 1.61 8.471 9.359 1.025 1.113 1.843 1.290 1.378 1.466 1.554 
W 1.62 8.628 9.533 1.044 1.134 1.224 1.314 1.404 1.493 1.583 
Au 2.39 2.738 3.026 3.312 3.599 3.884 4.170 4.455 4.739 5.023 
Pt 2.00 1.613 1.783 1.951 2.120 2.288 2.456 2.624 2.792 2.960 
Ta 2.84 4.571 5.050 5.530 6.007 6.484 6.960 7.436 7.911 8.385 
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Table 2: Electronic Heat Capacity of undeformed Metals. The experimental values were obtained from Introduction 
to solid state Physics by Kittel (1976) and Ashcroft and Mermin (1976). 

Metals Symbol 
Electron Density 
Parameter rs (a.u) 

Calculated Electronics Heat 
Capacity (J/kg-K) 

Experimental Electronics 
Heat Capacity (J/kg-K) 

Potassium K 4.96 0.214 
 

Copper Cu 2.67 3.405 0.385 
Silver Ag 3.02 4.909 0.236 
Beryllium Be 1.87 1.182 0.114 
Magnesium Mg 2.65 3.330 0.839 
Chromium Cr 1.86 1.164 0.946 
Iron Fe 2.12 1.716 0.460 
Nickel Ni 2.07 1.599 0.456 
Zinc Zn 2.31 2.215 0.390 
Cadmium Cd 2.59 3.111 0.458 
Aluminium Al 2.07 1.599 0.899 
Bismuth Bi 2.25 2.048 0.006 
Titanium Ti 1.92 1.279 - 
Yttrium Y 2.61 3.183 - 
Tin Sn 2.22 1.968 0.220 
Lead Pb 2.30 2.186 0.130 
Molybdnum Mo 1.61 7.580 0.260 
Tunasten W 1.62 7.721 - 
Gold Au 2.39 2.451 - 
Platinum Pt 2.00 1.444 - 
Tantalum Ta 2.84 4.090 - 
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