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Abstract: This paper explores the applicability and capability of solving site location problems using an integrated 
approach that includes the Markov-chain based Simulated Annealing (SA) algorithm, Geographic Information 
System (GIS), fuzzy Analytical Hierarchy Process (AHP) and Evaluation of Mixed Data (EVAMIX). The novelty of 
the proposed methodology is its capability to combine the flexibility of fuzzy logic in handling uncertainty with the 
simplicity, easy implementation and independence offered by simulated annealing in solving non-linear optimization 
problems, thus providing good site location solutions without losing consistency. In addition, the EVAMIX 
approach provides complete flexibility in using both quantitative and qualitative criteria. The approach is applied to 
a multiple objective decision problem of selecting the best location for a new landfill site, which will serve Blantyre 
City, an urban agglomeration in Malawi. 
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1. Introduction 

Decisions regarding site location are often 
plagued by vagueness, fuzziness, contradictory 
multiple objectives and a myriad of quantitative and 
qualitative factors. These decisions have an inverse 
relationship with our ability to define and model them 
in a precise way. As the degree of complexity of the 
decision making process increases, the methods and 
tools available to resolve them become rare. Hence, 
there is need for more sophisticated tools to aid 
decision making vis-à-vis multi-objective site location 
problems, which include some form of uncertainty. 

In this paper, the proposed solving tool is an 
integration of simulated annealing (van Laarhoven 
and Aarts, 1987; Kirkpatrick et al., 1983; Cerny, 
1985), geographic information system (GIS) 
(Burrough and McDonnell, 1998; Heywood et al., 
2006; Longley et al., 2010), fuzzy Analytical 
Hierarchy Process (AHP) (Bellman and Zadeh, 1970; 
Saaty, 1980; Saaty, 1986; Chang, 1996) and 
Evaluation of Mixed Data (EVAMIX) (Voogd, 1982; 
Nijkamp et al., 1990; Martel and Matarazzo, 2005; 
Hajkowicz and Higgins, 2008). Simulated Annealing 
(SA), a heuristic search algorithm, when used in 
conjunction with a GIS, yields optimum and close to 
optimum site locations that satisfy multiple objective 
functions or cost criteria within the search domain. 
Fuzzy AHP provides a useful approach to address the 
problems associated with the intrinsic imprecision, 
uncertainty and subjectivity of decision makers when 
faced with multi-attribute data. EVAMIX provides a 
way to rank and select the best site location by making 

use of both quantitative (cardinal) and qualitative 
(ordinal) criteria within the same evaluation matrix. 
The algorithm behind EVAMIX maintains the 
essential characteristics of cardinal and ordinal 
criteria, yet it is designed to eventually combine the 
results in a single appraisal score. This unique feature 
gives EVAMIX much greater flexibility and 
differentiates it from other Multi-Criteria Decision 
Analysis (MCDA) methods such as weighted 
summation, range of value method, PROMETHEE II 
(Brans et al., 1986; Figueira et al., 2005) etc., which 
are incorrectly applied to ordinal data by treating it as 
though they were at a cardinal measurement scale. 

The approach is applied to a multiple objective 
decision problem of selecting the best location for a 
new landfill site, which will serve Blantyre City, an 
urban agglomeration in Malawi. The example shows 
how decision makers can use this approach to treat 
landfill siting as a combinatorial optimization problem 
within a GIS environment, and use mixed criteria 
(qualitative and quantitative) to select the best 
possible landfill site, at the same time accounting for 
the intrinsic imprecision and ambiguity associated 
with decision makers when confronted with multi-
criteria data. 

The rest of the paper is organized as follows. 
Section 2 explores the three dominant themes of this 
study: simulated annealing, fuzzy AHP and EVAMIX. 
In Section 3, a real world case study is presented, the 
results are discussed and sensitivity analysis is 
conducted. The paper concludes in Section 4. 
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2. Heuristic/Optimization Algorithm 
Since locating a landfill site in a GIS can be 

classified as a combinatorial optimization problem, a 
heuristic search algorithm is required for solving the 
model. Note that various researchers have developed 
linear programming models to solve landfill siting or 
location allocation problems, but encountered 
limitations related to the spatial area that could be 
optimized (Arthur and Nalle, 1997; Aerts et al., 2003; 
Cova and Church, 2000). This problem arises because 
each map layer in a GIS by itself can consist of 
complex information on attribute values, and spatial 
relationships between attributes. When a large number 
of layers are involved in GIS analysis (as is normally 
the case), relationships between layers, and within 
themselves have to be considered. This often leads to 
a large solution space from which linear programming 
solvers find the spatial area too large to explore. In 
consequence, this exploration is time consuming and, 
in worse circumstances, linear programming models 
can get trapped in local minima. Heuristic algorithms, 
however, are robust, fast, capable of solving large 
combinatorial problems and do not get trapped in 
local minima. Application of such algorithms for 
landfill sitting or location allocation problems include 
simulated annealing, tabu search, genetic algorithms 
and greedy growing algorithms (Lockwood and 
Moore, 1993; Murray and Church, 1995; Muttiah et 
al., 1996; Brookes, 1997; Boston and Bettinger, 1999; 
Karaganis and Mimis, 2011). In this study the focus is 
on using simulated annealing as part of a model for 
solving a location siting problem. 
2.1 Simulated Annealing 

In general, Simulated Annealing (SA) is an 
iterative meta-heuristic search algorithm capable of 
escaping from local optima. Its ease of 
implementation, convergence properties and its use of 
hill-climbing moves to escape local optima have made 
it a popular technique over the past three decades. The 
origins and theoretical development of SA are well 
reviewed within the literature, therefore will not be 
repeated here. However, a good overview of 
simulated annealing’s theoretical development and 
domains of application can be found in (Pincus, 1970; 
Kirkpatrick et al., 1983; Cerncy, 1985; Eglese, 1990; 
Koulamas et al., 1994; Fleischer, 1995). van 
Laarhoven and Aarts (1987), Aarts and Korst (1989) 
also devote entire books to the subject. Aarts and 
Lenstra (1997) dedicate a chapter to SA in their book 
on local search algorithms for discrete optimization 
problems.  

Of interest to this research from the reviewed 
literature is the connection between SA and 
mathematical optimization, which was first noted by 
Pincus (1970), but it was the contributions made by 
Kirkpatrick et al. (1983) and Cerncy (1985), which 

have given the method its present use in solving a 
variety of global single objective or multiobjective 
optimization problems not only in mathematics, but 
also in other fields such as operations research, 
geodesy and GIS. 

For the purposes of this study a description of the 
key elements of the SA algorithm are summarised as 
follows: 

Step 1: Define an objective function or cost 

function f  in the form of a mathematical expression 
to describe the relationship of the parameters that will 
optimize the location siting process. It is the main aim 
of the SA algorithm to find an optimum solution that 

either minimizes or maximizes f .  

Step 2: Initialize a starting solution Dxi  , 

where ix
 is either a user provided or random 

generated initial spatial point solution within a GIS 

search domain D .  
Step 3: Choose an initial control parameter. This 

parameter allows the algorithm to converge to the 
optimum solution and every algorithm has one. Since 
SA originates from thermodynamics, its control 

parameter is in the form of a temperature )( 0T  value. 
This needs to be large enough to allow the search to 
traverse a large portion of the study area and 
overcome infeasible regions. 

Step 4: Obtain a new spatial location solution 
within the search domain by perturbing the previous 

solution location by a small amount, ix . The 

increment, ix  is random and can be in the form of a 
function. Among the many functions available, the 
Gauss distribution density function is one of the most 
suitable for defining this random movement, and is 
defined as follows, 
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With a zero mean and standard deviation . 

Step 5: Evaluate the objective/cost function to be 
optimized using the new spatial solution. If there is an 
improvement in the value of the objective/cost 
function (i.e., a decrease if the objective/cost function 
is to be minimized, or an increase if the objective/cost 
function is to be maximized), then the new spatial 
location is accepted. However, if the new solution has 
neither minimized nor maximized the objective/cost 
function and the algorithm becomes trapped into a 
local optimum, the SA algorithm is equipped with 
additional criteria to accept this solution (which is a 
worse solution) with a certain probability. Pardolas 
and Romeijn (2002), give a number of alternative 
ways to overcome this problem, which among others 
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include using a fixed probability (such as 0.2, 0.1, 
0.05 or 0.01), the Tsallis’ Acceptance Rule and Boltz-
man’s distribution. 

Step 6: Decrease the temperature during the 
search for the optimum solution by making use of a 
certain function known as the cooling schedule. There 
are several theoretical and empirical cooling schedules 
suggested in the literature, but given a sufficiently 

high initial temperature, 0T , some successful cooling 
functions are as follows: 
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Where, t , is the number of iterations the algorithm is 
allowed to perform at each temperature 

According to Berne and Baselga (2003), the final 
temperature at which to stop the iterations can be 
stated as a fraction of the initial one, for example, 

0
410 T

, or as the moment when the differences 

between two consecutive solutions in terms of ix  
becomes negligible. 

Step 7: Return to step 4 until the finish criteria are 
fulfilled.  
2.2 Integrated EVAMIX/ Fuzzy AHP 

The EVAMIX approach developed by Voogd 
(1982, 1983), and described in Nijkamp et al. (1990), 
Martel and Matarazzo (2005) and Hajkowicz and 
Higgins (2008) is an outranking method for evaluating 
alternative options using both quantitative (cardinal) 
and qualitative (ordinal) criteria within the same 
evaluation matrix and ranking the options from best to 
worst. The literature shows some applications of 
EVAMIX in the field of multi criteria analysis in 
material selection by Chatterjee et al. (2011), 
industrial environment by Darji and Rao (2013), 
spatial ranking of vulnerability proposed by Chung 
and Lee (2009), analysis of investments in 
construction by Ustinovichius et al. (2007) and multi 
criteria analysis of small-scale forestry by Jeffreys 
(2004). It is very clear from the above listed 
references that, there exist few applications of the 
EVAMIX method in science, ecological, industrial, 
financial and non-financial units, and rare applications 
in the related fields of multi objective optimization 
and GIS. 

As part of a model for solving a site location 
problem, this study adopted EVAMIX for evaluating 
alternative landfill site locations using both 
quantitative and qualitative multi criteria and rank the 
sites from best to worst. From a procedural point of 
view, the EVAMIX method used in this present paper 

can be summarised in seven steps, which are 
discussed as follows: 

Step 1: Construct an ba evaluation matrix E , 

where a is the number of alternatives and b is the 
number of evaluation criteria (quantitative and/or 
qualitative). Thus given a set of evaluation criteria 

),,2,1( bjj  and a finite set of alternatives 
),,2,1( aii  , the evaluation matrix E will be 

characterized by its ordinal and cardinal components 
as follows: 
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Then, distinguishing the set of evaluation criteria into 
two subsets, ordinal and cardinal criteria, we obtain 

two distinct evaluation matrices: oE (ordinal criteria) 

and CE (cardinal criteria). 
Step 2: Standardize the cardinal data set to a 

common unit using linear normalization. Beneficial 
criteria are normalized using Eq. (5), whilst non-
beneficial criteria are normalized using Eq. (6). 
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According to Eq. (5) and Eq. (6) in the normalized 
decision matrix, the maximum value will always be 1 
and the minimum value equal to 0. 

Step 3: Calculate the weights or measure of 
importance of each criterion (ordinal or cardinal) with 
respect to the others. This step involves making use of 
the fuzzy AHP as an integral part of the EVAMIX 
method. The study concentrates on the fuzzy AHP 
approach introduced by Chang (1996), in which 
triangular fuzzy numbers (TFNs) are preferred for the 
pairwise comparison scale. When using TFNs, an 
interval is used to define the decision maker’s 
judgement. This is in the form of three numbers or 

parameters, expressed as ( l , m , u ), where the lowest 

possible parameter or value is l , the middle possible 

parameter or value is m  and the upper possible 

parameter or value is u . The domain of this interval is 
described by a triangular membership function, which 
can be represented in both math and graph form using 
Eq. (7) and Figure 1, respectively (Chang, 1996; 
Kaufmann and Gupta, 1988) as follows: 
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Figure 1: Fuzzy Triangular Number 

 
 

In order to utilize TFNs in a fuzzy environment, 
their basic algebraic operations should be understood. 
An extensive discussion on these operations can be 
found in Chang (1996), Kaufmann and Gupta (1988) 
and Zadeh (1965). However, for the purposes of this 
research only three operations are illustrated. Consider 

that 1

~
M  and 2

~
M  are two TFNs were 

),,(
~

1111 umlM   and ),,(
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2222 umlM  . The three 
basic operations used in this study are: 
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Using these three algebraic operations the 
process of calculating the weights of the evaluation 
criteria is as follows: 
 Construct the fuzzy AHP comparison matrix. The 

aim of the matrix is to elucidate an order of 
preference given a number of evaluation criteria. 
Central to this is a series of pairwise comparisons, 
indicating the relative preferences between pairs 
of evaluation criteria. Since decision makers use 
linguistic terms or verbal judgements during 
pairwise comparison, a measurement scale is 
required to convert these pairwise comparisons 
into fuzzy numbers. One such scale showing the 
proposed TFNs, membership functions and 
matching linguistic variables or verbal 
judgements was provided by Saaty (1980) and is 
shown in Table 1. 

By using TFNs for pairwise comparison of the 

evaluation criteria a fuzzy comparison matrix A
~

 
is created and is of the form: 
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The number of comparisons for each matrix is 

2/)1( bb , where b is the total number of 
evaluation criteria.  

 Compute the normalized value of row sums (i.e. 

the fuzzy synthetic extent, jS
~

 ) for the fuzzy 

comparison matrix A
~

 by making use of fuzzy 
arithmetic operations from Eq. (8-10) such that: 
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To obtain, 
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, the fuzzy addition operation 
(Eq. (8)) is applied to the fuzzy judgement 
matrices, such that, 
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The second part of Eq. (11) is obtained by 
applying the fuzzy addition operation (Eq. (8)) to 
column values in the matrix obtained from Eq. 
(12), followed by using Eq. (10) to compute the 
inverse of the resulting vector such that, 
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 Using the normalized TFNs of two criteria 

obtained from Eq. (11) determine the degree of 
possibility of one criteria fuzzy number’s being 
greater than or equal to the other criteria fuzzy 

number’s 21

~~
jj SS 

 (see Figure 2). This can be 
represented by Eq. (14) and Figure 2. 
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Table 1: Proposed TFN, linguistic variables and membership functions 
Saaty’s scale 
of relative 
importance 

Definition Membership function Domain TFNs scale  
Linguistic 
variables 

 Just equal   (1.0,1.0,1.0) Just equal 

1 Equal importance   (1.0,1.0,3.0) 
Least 
importance 

3 
Moderate 
importance of one 
over another 

  
(1.0,3.0,5.0) 

Moderate 
importance 

  

5 
Essential or strong 
importance 

  
(3.0,5.0,7.0) 

Essential 
importance 

  

7 
Demonstrated 
importance 

  
(5.0,7.0,9.0) 

Demonstrate 
importance 

  

9 Extreme importance   (7.0,9.0,9.0) 
Extreme 
importance 

Reciprocals 
of above 
non-zero 
numbers 

If an activity has 
one of the above 
numbers (e.g., 3) 
compared with a 
second activity, then 
the second activity 
has the reciprocal 
value (i.e., 1/3) 
when compared to 
the first.  

  
Reciprocals of above; 

 
 

Adapted from Saaty (1980) 
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Figure 2: Degree of possibility 
 

 Extend the basic principles from above and 
determine the degree of possibility of one 
criterion fuzzy numbers being greater than all the 

other )1( b criteria fuzzy numbers. This can be 
defined as follows, 
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By taking the minimum values in the degree of 
possibility sets created from Eq. (15), it is possible to 

determine a weight vector, w , as  
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The normalized weight vectors for each fuzzy 

comparison matrix, A
~

, at each level of the 
hierarchy is then determined by normalizing the 

weight vector, w . This is known as de-
fuzzification and involves dividing each value in 

the weight vector, w , by their total sum as 
follows, 
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 Determine whether the process of assigning 

weights was consistent by calculating the Fuzzy 
Consistency Ratio (FCR). For this research the 
algorithm used to calculate the FCR is that 
proposed by Modarres et al. (2010), which is 
based on the preference ration concept. The 
algorithm is as follows: 

 Define a fuzzy matrix h
~

, such that, 

)18.......(..........~~
jkajwjkh 

, where jw
 

is the weight for the 
thj

 criterion for 

bj ,...,2,1  and jka~
 are the TFN’s in the 

fuzzy judgement matrix. 

 Sum the values of each 
thj  row of the 

matrix h
~

, that is, 
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 For btoj 1  calculate j
~

 such that 
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 Calculate the Consistency Index (CI) as 

follows: 
)21.(..........
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)
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(
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


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
b

b
bCI

j

. The 
smaller the CI, the smaller the deviation from 
the consistency. 

 Obtain the random index (RI) for the number 
of criteria from Table 2. 
 

Table 2: Random Indices 
Order of Matrix Random Index 
2 0 
3 0.58 
4 0.90 
5 1.12 
6 1.24 
7 1.32 
8 1.41 
9 1.45 
10 1.51 
 

 Calculate the FCR using, 

)22...(..........
RI

CI
FCR 

. However, since TFNs 

were used to represent uncertainty in the 
judgment matrix, the FCR values obtained from 
Eq. (22) will be in the form of a set with 3 
values. As such, determine the FCR as a 
preference ratio, such that it is defined as the 

percentage of the 
thi  fuzzy number within a set 

being the most preferred. This ratio according to 
Modarres and Sadi-Nezhad (2001) can be 

expressed as 
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, where 

i
 and   are values in FCR set obtained from 

Eq. (22). Usually a CR of 0.1 or less is 
considered as acceptable, and it reflects an 
informed judgement attributable to the 
knowledge of the analysts regarding the problem 
under study. 
Step 4: Use the criteria and their associated 

weights ( jW
) to compare the alternative options by 

computing the dominance scores of each alternative 

option pair, 
),( 'ii

. For all ordinal criteria use Eq. 
(24), otherwise use Eq. (25) for all cardinal criteria. 
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and C  is a subset of criteria with a cardinal 
measurement scale.  

Step 5: Calculate standardized dominance scores 
for all ordinal and cardinal criteria. The dominance 

scores 
'ii


and 

'ii


 are standardized into the same 
measurement unit in order to make them comparable. 

If Z  is a standardization function, then the 
standardized dominance measures for all ordinal 

)( 'ii


 and cardinal 
)( 'ii

d
 criteria have the following 

expressions: 

)()( '''' iiiiiiii
ZdandZ  

 
The standardized dominance scores can be 

obtained using three different approaches, i.e., (a) 
subtractive summation, (b) subtracted shifted interval, 
and (c) additive interval technique. For this study, the 



 Journal of American Science 2016;12(10)           http://www.jofamericanscience.org 

 

22 

additive interval technique will be used and is 
represented as follows: 
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Where 
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 is the highest (lowest) ordinal 

dominance score for the alternative pair, (
', ii ). 
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Where )(    is the highest (lowest) cardinal 

dominance score for the alternative pair, (
', ii ). 

Step 6: Assuming that weights jW
 have 

quantitative properties, the overall dominance 

measure 
'ii

D
 for each pair of alternatives landfill sites 

(
', ii ) is: 
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Where Ow
 is the sum of the weights for the ordinal 

criteria 
)(  


Oj jO Ww

 and Cw
 is the sum of the 

weights for the cardinal criteria 
)(  


Cj jC Ww

. 
This overall dominance score reflects the degree to 

which option ia
 dominates option 

'i
a

 for the given 
set of criteria and weights. 

Step 7: For each option, its final appraisal 
score is given by,  
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Where 1  iiii DD . The higher the appraisal score 
the better is the performance of the option. Thus, the 
best option is the one with the highest appraisal score. 
3.0 Empirical study of landfill site selection 
3.1 Study Area 

The study is applied in Blantyre City, which is 
the second largest urban center in Malawi and is 
located 311km south east on the national capital, 
Lilongwe (Figure 3).  

Situated at an altitude of approximately 1,150 
meters above sea level, Blantyre City covers an area 
of over 220 square kilometers. According to the 
National Statistical Office the population of Blantyre 
City was estimated at 661,256 in 2008, with an 
average population density of 3,006 people per square 
kilometer. This accounted for a 5.1 per cent share on 
the national population. However, the population is 
projected to rise to 1,068,681 by 2015.  

 
Figure 3: Study Area 

 
3.2 State of solid waste management in Blantyre 
City 

According to Matope (2000), it is estimated that 
more than a decade ago the city of Blantyre generated 
waste totalling 0.37 kg per capita per day, the 
equivalent of 192 tons a day, three-quarters of which 
was classed as domestic waste. By the year 2006, 540 
metric tons were being generated in the city as solid 
waste. More recently, the average amount of waste 
being produced is 0.9 kg per capita per day, which 
amounts to 647 metric tons per day – 81 per cent of 
which is organic and biodegradable (Matope, 2000; 
Berman, 2011). A breakdown of the waste according 
to the city’s different economic backgrounds is shown 
in Table 3. According to UN-HABITAT (2011), only 
a third of the solid waste produced is collected and 
disposed properly.  

 
Table 3: Breakdown of waste by economic 
background 
Component of 
the waste 
stream 

Waste Fraction (% by mass) 
High 
Income 

Middle 
Income 

Low 
Income 

Paper 30 20 7 
Plastics 30 20 8 
Glass 18 10 2 
Metals 5 3 2 
Textiles 4 3 1 
Garden waste 1 1 0 
Builder’s 
rubble 

1.5 1 0 

Ash 0.5 20 25 
Putrescibles 10 28 55 
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Blantyre City Council (BCC) Health and 
Engineering Department, which is responsible for 
solid waste management as mandated by the Local 
Government Act of 1980 contributes to this escalating 
problem by offering selective waste collection 
services. Waste collection services are not 
consistently made available to all areas, with high-
income areas getting more services than low-income 
areas. This is a common practice by local authorities 
in developing countries to allocate resources to areas 
with higher tax yields. In high-income areas collection 
of waste is carried out six days a week and in the 
city’s busier markets it is done every day. There are 
also a number of private entities which provide waste 
collection services within the city. These include 
private trash collectors who focus on commercial or 
industrial companies. In addition, the privately owned 
Malawi Housing Corporation focuses on collecting 
waste from high-income residential areas. In other 
residential areas and market places, the BCC has skips 
in place, but collection is irregular. In peri-urban 
areas, informal settlements and Traditional Housing 
Areas (THAs), regular solid waste collection is non-
existent, partly due to the shortage of access roads. 
Consequently, household solid waste is often 
indiscriminately discarded or dumped in the streets, 
pits, or drains.  

The situation is compounded by the frequent fuel 
shortages and breaking down or shortage of 
equipment. According the BCC, the city owns 100 
skips, of which 58 are hired out to private companies 
while the rest are placed in markets and unplanned 
areas. This leaves 42 skips to service the city markets, 
THAs and informal sectors. As a result, only 125 
tonnes of waste is collected from these areas meaning 
a further 475 tonnes of waste go uncollected by the 
council. In addition, poor maintenance and misuse 
such as setting garbage loaded skips on fire are 
contributing to their deteriorated status. With an 
average working life of 3 years for a skip, poor 
replacement ratio is compounding this situation. 
Furthermore, the 14 refuse trucks and 3 tractors used 
to collect these skips frequently break down due to 
poor maintenance, which is not helped by the fact that 
the majority of them are overused and have not been 
replaced in the past decade, thus have succumbed to 
natural wear and tear.  

As of 1993, the official disposal site for solid 
waste from Blantyre City is located on the slopes of 
Mzedi Mountain along the eastern boundary of the 
city (UN-HABITAT, 2011). The site is more of an 
open dump than a proper landfill. The site is not 
fenced or walled and lacks a leachate or gas 
management system, which are basic requirements of 
a landfill. On a monthly basis it receives roughly 
3,000 tonnes of waste. The majority of the waste is 

general waste from households, industry, hospitals 
and educational institutions, however, there are 
sightings of restricted materials such as hazardous 
(batteries, paint etc.) and medical waste being dumped 
at the site illegally. To create room waste is piled up 
in heaps then eventually spread level then covered in 
earth before being compacted at the site. This is done 
twice a year by a private company hired by the BCC. 
The process is neither sustainable nor cost-effective as 
the BCC spends an estimated MK 10 million (US35, 
335) just to bulldoze the Mzedi dump site each year. 
As no impervious soil is placed on the ground before 
compaction, leachate from the waste is more likely to 
percolate into the ground and eventually contaminate 
the city’s groundwater systems. The BCC also often 
resorts to burning the waste to curb the nuisance 
produced by flying litter and to create room for more 
waste. At least 150 scavengers (mostly women and 
children) who visit the site on a daily basis run the 
risk of contracting respiratory diseases as they inhale 
the smoke or are exposed continuously to the strong 
foul odours emanating from the decomposing waste. 
The dumpsite also creates ideal conditions for vectors 
such as mosquitos to thrive. During the rainy season, 
nearby streams transport the malaria vectors in the 
city’s water system thus an upsurge of Malaria. 

In light of the above, the Mzedi dump site has 
outlived its lifespan and is dilapidated. It is also a long 
distance from the city center, influencing the cost 
involved in collecting and disposing of waste. The 
BCC has determined that a second site for building a 
proper landfill is needed and should be located closer 
to the city. However, they do not expect it to be 
operational before 2015. In addition, the continuous 
increase in population and subsequent waste 
generation within Blantyre City calls for an urgent 
determination of the best location for a new landfill.  
3.3 Implementation and Results  

The combined methodology of the study in 
shown in Figure 4. After determining the problem 
area, landfill siting was treated as a combinatorial 
optimization problem. As such, simulated annealing 
was used to identify optimum sites for locating a 
landfill. For ranking and selecting the alternative 
landfill sites an integrated EVAMIX/ Fuzzy AHP 
approach was employed. The study was implemented 
under the setting of fuzzy set theory to accommodate 
the inherent uncertainty or ambiguity associated with 
decision makers when faced with complex multi-
attribute decision making problems such as landfill 
siting.  
3.3.1 Optimizing landfill siting 

In this study, the process of finding alternative 
sites for locating a landfill in Blantyre City was 
treated as a combinatorial optimization model with all 
the main elements of a complex problem, that is, 
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multiple objectives, multi-facilities, and non-linearity. 
The optimization problem was approached as a 
continuous model and the alternative landfill sites 
were considered to be entering an existing network. 
Formally, the problem was formulated by assuming 

that 
2RD   is the region of interest (i.e., the study 

area) and
Dxxx n ,...,, 21 , where nxxx ,...,, 21  are 

the spatial locations of n landfill sites. As discussed in 
step 1 of section 2.1, an objective function or cost 
function in the form of a mathematical expression is 
required to describe the relationship of the parameters 
that will optimize the landfill siting process. Within 
the context of this research, the objective functions 
were modelled by assuming that the aim was to 
maximize the distance between, (i) new and the 
existing Mzedi disposal site, and (ii) new landfill sites 
only. In that respect, two objective functions 
represented by Eq. (30) and Eq. (31), were defined. 
As a distance function the Euclidean distance was 
used as comparisons by Love et al. (1998) and 
Apparicio et al. (2008) have shown that it is close to 
reality than the Manhattan or other distance functions. 
 

 
Figure 4: The Proposed Landfill Siting Model 
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Where, m is the number of existing landfill sites (in 

this study its one, the Mzedi landfill), n  is the number 

of new landfill sites, 
ji xx 

, and 
gi xx 

are the 
Euclidean distances between; (1) any two new 

landfills ix  and jx
, and (2) a new landfill ix  and an 

existing landfill gx
.  

Having defined the objective functions a pseudo-
computer code of the simulated annealing algorithm 
used for this research was developed as shown in 
Figure 5. The approach was implemented by tight 
coupling, with the SA algorithm for continuous non-
linear optimization being executed within a 
Geographical Information System (GIS) environment 
where with the usage of the associated spatial 
information, the objective functions were evaluated. 
Python was used as the scripting language in 
combination with ArcPy, a new site package in 
ArcGIS 10 that builds on (and is a successor) to the 
successful arcgisscripting module. Using ArcPy it was 
possible to access and work with numerous Python 
modules from different sources but not necessarily 
part of ArcGIS 10. 

 

 
Figure 5: Simulated Annealing Algorithm 

 
 

Line 2 of the pseudo-computer code initializes a 

starting point Dx , where x  represents the x, y 
coordinates of a landfill site within the search space or 

domain D , which is the study area. In this case it was 
user provided as the centroid of Blantyre City. Line 3 

chooses a high enough temperature 
)( 0T

, such that 

almost any trial landfill location x  is accepted. Here, 
an initial temperature of 100,000 was considered to be 
high enough for the SA algorithm to converge to the 
optimal location of a landfill site. At each temperature 

the SA algorithm in executed TN
 times (see Line 4) 

using Eq. (32) as follows: 
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)32....(..........).........(10)10( mvandmvNT    
Where, v , is the number of variables and m is 

the number of constraints. Eq. (32) is a by-product of 
the heuristic rule (Corana et al. (1987). It should be 
noted that for each landfill site, the problem variables 
are two, one for each coordinate. Line 6 terminates the 

algorithm if the current temperature, T , is small 
enough (i.e., less or equal than 0.0001). Line 8 

generates a random trial landfill site, x , within the 

neighbourhood, )( x , from the current location x  in 

search space D . The neighbour landfill sites were 
generated through the use of polar coordinates that 
guarantee the necessary randomness of the selection 

process for the new locations considered. Thus, if x  
represents a shift in the location of a site, then 

 
Where 

 
The new landfill site, in the neighbourhood of the 
previous location is then given by: 

)33(),,(),,(),,( 111 nnn xxxxxx

xxx





  
Line 9 calculates the difference between the new 

and previous cost/objective functions. In this case it’s 
the Euclidean distances between, (1) new and already 
existing Mzedi landfill site and (2) new landfill sites. 

These are represented by variable . Line 11 checks 
if the new location has maximized or minimized the 
objective functions shown in Eq. (30) and Eq. (31). 
This location is now accepted as the new site for the 
landfill. If the new location has neither minimized nor 
maximized the objective functions (failure to move to 
a smaller energy state) and the algorithm becomes 
trapped into a local optimum, Lines 13 and 14 accepts 
this location (which gives a worse solution) with a 
certain probability, which in this study is given by the 
Tsallis’ Acceptance Rule as in Eq. (34). This helps the 
SA algorithm to escape from local minima and be able 
to provide a global optimum solution. 
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Finally, Line 16 reduces T after looping TN
 

times of generating x and accepting them with 

probability given by the Tsallis’ rule. T was reduced 

using a geometric cooling schedule, TT  , where 
 is a constant known as the cooling rate and is 
smaller than 1 (typically between 0.5 and 0.99). At 

high T , any trial landfill site was accepted with high 
probabilities, allowing the search to traverse a large 
portion of the study area and overcome infeasible 

regions. As T was gradually reduced, its acceptance 
probability decreased, and at very low temperatures 
the algorithm behaved like a local search. 

At the end of the SA algorithm one candidate 
landfill site was generated. However, in order to give 
decision makers more candidate sites to choose from, 
the SA algorithm was run again six more times thus 
generating six more alternative sites. During each run, 
a random spatial location within the study area was 
used as the starting point for the algorithm. As a 
result, the SA algorithm provided a good set of seven 
(7) alternative candidate landfill sites (denoted as L1, 
L2, L3, L4, L5, L6 and L7 respectively) for further 
evaluation based on criteria that had not been 
considered early on in the research and are difficult to 
account for by a numerical scheme. Figure 6 shows 
the location of the alternative sites in relation to the 
transport network, water sources, land cover type and 
waste generation centers as well as the existing Mzedi 
disposal site. Because a high temperature of 100,000 
degrees Celsius was used to initialize the search area, 
it allowed the SA algorithm to traverse a large portion 
of Blantyre City and overcome infeasible regions 
hence the location of these sites is such that they are 
fairly distributed around the study area. The sites are 
also located such that the Euclidean distances between 
them maximizes the objective functions set out in Eq. 
(30) and Eq. (31). 
3.3.2 Selecting and ranking landfill sites 

For identifying the selection criteria to rank and 
select the seven candidate sites, a number of 
qualitative and quantitative factors affecting the 
location evaluation procedure were considered from a 
long list of criteria discussed in Zeiss and Lefsrud 
(1995), Wang et al. (2009), Siddiqui et al. (1996), 
Sener et al. (2006) and Kontos et al. (2003). The 
following seven criteria were adopted: land cover 
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type, slope, elevation, soil, distance from transport 
network, distance from waste generation centers and 
distance from water sources. Table 4 is a summary of 
the essential characteristics of each alternative landfill 
site with respect to the chosen criteria. Among the 
criteria, two are qualitative (ordinal) in nature and five 
are treated as quantitative (cardinal).  

 
Figure 6: Candidate Landfill Sites 

 
Using the EVAMIX method, the original 

decision matrix, as shown in Table 4, was separated 
into ordinal (Landcover and Soil) and cardinal criteria. 
The decision matrix was then normalized using Eq. 
(5) and Eq. (6) respectively for beneficial and non-
beneficial attributes. This normalized decision matrix 
is shown in Table 5. Distances between landfill sites 
and waste generation areas (residential, industrial and 
commercial areas) need to be maximized such that 
aesthetics and odour do not become a public concern. 
At the same time, locating landfills further away from 
any water body not only reduces their pollution, it also 
protects the aquatic life in these water bodies and 
reduces the likely human health impacts of leachate 

from landfills. Thus for this study, distance from 
waste generation sources and distance from water 
sources criteria were treated as beneficial criteria. On 
the other hand, steeper slopes and high ground mean 
higher excavation costs. Furthermore, sites located on 
higher slopes or elevated land increases the chances of 
runoff of pollutants from the landfill, and as such 
contaminates the wider environment (Gemitzi et al., 
2007; Lin and Kao, 1999). Moreover, landfills should 
be located as close as possible to transport networks to 
allow accessibility to the site and minimize transport 
costs. Thus, slope, elevation and distance from 
transport networks criteria were treated as non-
beneficial criteria were lower values are more 
desirable.  

In order to determine the measure of importance 
of each criterion (ordinal or cardinal) with respect to 
the others, weights were calculated using fuzzy AHP. 
Fuzzy set theory was utilized to accommodate the 
inherent uncertainty or ambiguity associated with 
decision makers when faced with complex multi-
attribute decision making problems. First, the criteria 
were divided into four main groups; environmental, 
geomorphological, economic and hydrological, to 
form the data hierarchy shown in Figure 7. 
Using fuzzy AHP, criteria shown in Figure 7 were 
compared via pairwise comparison. The resulting 
matrices shown in Tables 6a-f use TFNs to tackle 
ambiguities involved in comparison judgements using 
linguistic variables as set out in Table 1. For 
determining weights of criteria in these fuzzy 
comparison matrices, the Fuzzy Extent Analysis 
(FEA) proposed by Chang (1996) and discussed in 
step 3 of section 2.2 was applied. First, the fuzzy 
synthetic extent values were obtained from Eq. (11) 
with the help of Eq. (12) and Eq. (13). Eq. (15), which 
extends the basic principles of Eq. (14), was then used 
to express the degree of synthetic extent values. Using 
Eq. (16), a weight vector was obtained. This weight 
vector was then normalized using Eq. (17) to obtain 
priority weight vectors of criteria as presented in the 
last column of the matrices. 

 
Table 4: Quantitative and Qualitative data for landfill siting 

Landfill 
site 

Criteria 

Landcover type 
Slope 
(%) 

Elevat
ion 
(m) 

Soil type 
Distance from 
transport 
network (m) 

Distance from 
waste generation 
centers (m) 

Distance from 
water sources 
(m)  

L1 Forest (3) 9 1011 Eutric Ca (2) 264 295 8258 
L2 Agriculture/Settlement (1) 1 1110 Chromic L (1) 740 2360 4333 
L3 Agriculture/Settlement (1) 1 902 Eutric Ca (2) 723 1474 1587 
L4 Agriculture/Settlement (1) 3 1100 Chromic L (1) 477 5393 1153 
L5 Forest Plantation (2) 6 1117 Eutric Ca (2) 482 430 2488 
L6 Forest Plantation (2) 19 1200 Eutric Ca (2) 208 669 2551 
L7 Forest (3) 42 1402 Leptosols (3) 748 930 3169 
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Table 5: Normalized decision matrix 

Landfill 
Site 

Criteria 

Landcover 
Type 

Soil 
Type 

Slope 
(%) 

Elevation 
(m) 

Distance from 
transport 
network (m) 

Distance from waste 
generation centers 
(m) 

Distance from 
water sources 
(m) 

L1 1.0000 0.3333 0.8049 0.7820 0.8963 0.0000 1.0000 
L2 0.0000 0.0000 1.0000 0.5840 0.0148 0.4051 0.4476 
L3 0.0000 0.3333 1.0000 1.0000 0.0463 0.2313 0.0611 
L4 0.0000 0.0000 0.9512 0.6040 0.5019 1.0000 0.0000 
L5 0.5000 0.3333 0.8780 0.5700 0.4926 0.0265 0.1879 
L6 0.5000 0.3333 0.5610 0.4040 1.0000 0.0734 0.1968 
L7 1.0000 1.0000 0.0000 0.0000 0.0000 0.1246 0.2837 
 

 
Figure 7: Criterion hierarchy for landfill siting 

 
Table 6a: The pairwise comparison matrix A-B1-4 

A B1 B2 B3 B4 W 
B1 (1,1,1) (5.0,7.0,9.0) (1.0,3.0,5.0) (3.0,5.0,7.0) 0.4197 
B2 (1/9,1/7,1/5) (1,1,1) (1/7,1/5,1/3) (1/5,1/3,1) 0.1257 
B3 (1/5,1/3,1) (3.0,5.0,7.0) (1,1,1) (5.0,7.0,9.0) 0.3716 
B4 (1/7,1/5,1/3) (1.0,3.0,5.0) (1/9,1/7,1/5) (1,1,1) 0.0830 
FCR =0.014, A = Landfill site suitability, B1 = Environmental Criteria, B2 = Geomorphological criteria, B3 = Economic 
criteria, B4 = Hydrological criteria, W is the weight of B1, B2, B3 and B4 to A. 
V(SB1 ≥ SB2, SB3, SB4) = 1; V(SB2 ≥ SB1, SB3, SB4) = 0.2995; V(SB3 ≥ SB1, SB2, SB4) = 0.8852; V(SB4 ≥ SB1, SB2, SB3) =0.1976 
 

Table 6b: The pairwise comparison matrix B1-C1 
B1 C1 W 
C1 (1,1,1) 1 

FCR =0.000, B1 = Environmental Criteria, C1 = 
Landcover type, W is the weight of C1 to B1. 
 

Table 6c: The pairwise comparison matrix B2-C2-3 
B2 C2 C3 W 
C2 (1,1,1) (1/7,1/5,1/3) 0.2541 
C3 (3.0,5.0,7.0) (1,1,1) 0.7459 

FCR = 0.012, B2 =Geomorphological Criteria, C2 

=Topography, C3 = Soil, W is the weight of C2 and C3 to 
B2. 

V(SC2 ≥ SC3) = 0.3407; V(SC3 ≥ SC2) = 1 
 

Table 6d: The pairwise comparison matrix B3-C4-5 
B3 C4 C5 W 
C4 (1,1,1) (5.0,7.0,9.0) 0.5107 
C5 (1/9,1/7,1/5) (1,1,1) 0.4893 

FCR =0.016, B3 =Economic Criteria, C4 =Distance from 
transport network, C5 = Distance from waste generation 
centers, W is the weight of C4 and C5 to B3. 
V(SC4 ≥ SC5) = 1; V(SC5 ≥ SC4) = 0.9581 
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Table 6e: The pairwise comparison matrix B4-C6 
B4 C6 W 
C6 (1,1,1) 1 

FCR =0.000, B4= Hydrological Criteria, C6= 
Distance from water sources, W is the weight of C6 to 
B4. 
 

Table 6f: The pairwise comparison matrix C2-D1-2 
C2 D1 D2 W 
D1 (1,1,1) (3.0,5.0,7.0) 0.7459 
D2 (1/7,1/5,1/3) (1,1,1) 0.2541 
FCR =0.000, C2 =Topography, D1 =Slope, D2 = 
Elevation, W is the weight of D1and D2 to C2. 
V(SD1 ≥ SD2) = 1; V(SD2 ≥ SD1) = 0.3407 

 
To determine whether consistency was 

maintained in assigning the weights, a Fuzzy 
Consistency Ratio (FCR) was calculated for each 
matrix using the algorithm outlined in step 3 of 
section 2.2, which is based on the preference ratio 
concept. Since the FCRs obtained for each matrix 
were less than 0.1, the weights were deemed 
acceptable. Because the criteria are in the form of a 
hierarchy, their final weight is dependent on that of 
other criteria either in the lower or upper level of the 
hierarchy. Hence, the final weight of a criterion in the 
lower level of the hierarchy was obtained by 
multiplying its weight by those of elements in the 
upper level as long as they are directly related in the 
hierarchical structure. For example, the final weight of 
the elevation criterion (represented by D2 in the 
hierarchy) was obtained as follows:  

Final weight of D2 = Weight of D2 to C2 * 
Weight of C2 to B2 * Weight of B2 to Objective A 
This was done for all criteria and the results are shown 
in Table 7. The sum of the final weights is 1, a 
requirement which must be fulfilled during the 
process of assigning weights. 
 

Table 7: Final weights of criteria 
Goal A Hierarchy B Hierarchy C Hierarchy D Wf 
A B1 C1  

0.4197 

 
B2 C2 D1 0.0238 

 
B2 C2 D2 0.0081 

 
B2 C3  

0.0938 

 
B3 C4  

0.1898 

 
B3 C5  

0.1818 

 
B4 C6  

0.0830 

 
From the normalized decision matrix (Table 5), 

the evaluative differences of ith alternative for each 
ordinal and cardinal criteria with respect to all the 
other alternatives were calculated. Using the weight of 
each criterion obtained in Table 7 and the evaluative 
differences, dominance scores for each pair of landfill 
site alternatives for all the ordinal and cardinal criteria 
were estimated by applying Eq. (24) and Eq. (25) 
respectively, and are given in Table 8. While 
calculating the dominance scores for all pairs of 

landfill site alternatives, the value of c (see Eq. (24) 
and Eq. (25)) was taken as 1. Table 8 also exhibits the 
standardized dominance scores computed by 
employing Eq. (26) and Eq. (27) respectively for 
ordinal and cardinal criteria. 

 
Table 8: Dominance and standardized dominance scores of each alternative landfill site pair 

Site pair ii 
 ii 

 ii 
 iid   

Site pair ii 
 ii 

 ii 
 iid   

L1,L2 0.5135 0.0752 1.0000 0.5773 L4,L5 -0.5135 0.3206 0.0000 0.8295 

L1,L3 0.4197 0.0590 0.9087 0.5606 L4,L6 -0.5135 -0.0590 0.0000 0.4394 
L1,L4 0.5135 0.0752 1.0000 0.5773 L4,L7 -0.3260 0.3206 0.1826 0.8295 

L1,L5 0.4197 0.0752 0.9087 0.5773 L5,L1 -0.4197 -0.0752 0.0913 0.4227 
L1,L6 0.4197 -0.2567 0.9087 0.2362 L5,L2 0.5135 -0.1070 1.0000 0.3901 
L1,L7 -0.0938 0.1229 0.4087 0.6263 L5,L3 0.4197 0.0590 0.9087 0.5606 

L2,L1 -0.5135 -0.0752 0.0000 0.4227 L5,L4 0.5135 -0.3206 1.0000 0.1705 
L2,L3 -0.0938 0.0669 0.4087 0.5687 L5,L6 0.0000 -0.4226 0.5000 0.0657 

L2,L4 0.0000 -0.2729 0.5000 0.2195 L5,L7 -0.5135 -0.0431 0.0000 0.4557 
L2,L5 -0.5135 0.1070 0.0000 0.6099 L6,L1 -0.4197 0.2567 0.0913 0.7638 

L2,L6 -0.5135 0.1070 0.0000 0.6099 L6,L2 0.5135 -0.1070 1.0000 0.3901 
L2,L7 -0.5135 0.4865 0.0000 1.0000 L6,L3 0.4197 0.0590 0.9087 0.5606 
L3,L1 -0.4197 -0.0590 0.0913 0.4394 L6,L4 0.5135 0.0590 1.0000 0.5606 

L3,L2 0.0938 -0.0669 0.5913 0.4313 L6,L5 0.0000 0.4226 0.5000 0.9343 
L3,L4 0.0938 -0.2567 0.5913 0.2362 L6,L7 -0.5135 -0.0431 0.0000 0.4557 

L3,L5 -0.4197 -0.0590 0.0913 0.4394 L7,L1 0.0938 -0.1229 0.5913 0.3737 
L3,L6 -0.4197 -0.0590 0.0913 0.4394 L7,L2 0.5135 -0.4865 1.0000 0.0000 
L3,L7 -0.5135 0.3206 0.0000 0.8295 L7,L3 0.5135 -0.3206 1.0000 0.1705 

L4,L1 -0.5135 -0.0752 0.0000 0.4227 L7,L4 0.3260 -0.3206 0.8174 0.1705 
L4,L2 0.0000 0.2729 0.5000 0.7805 L7,L5 0.5135 0.0431 1.0000 0.5443 

L4,L3 -0.0938 0.2567 0.4087 0.7638 L7,L6 0.5135 0.0431 1.0000 0.5443 
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The overall dominance scores for each 
alternative site pair were calculated using Eq. (28), 

and they reflect the degree to which alternative ia
 

dominates alternative 
'i

a
 for the given set of criteria 

and weights. These overall dominance scores for all 
the site pairs are given in Table 9. Finally, using Eq. 
(29), the appraisal score for each landfill site 
alternative was calculated, as shown in Table 10. 
Based on the descending values of the scores, the best 
alternative site for locating a landfill in Blantyre City 
was L1. 
3.3.3 Sensitivity Analysis 

In all site selection processes, it is necessary to 
assess the reliability of the technique used in 
identifying the best candidate site. Tayyebi et al. 
(2010, Onut et al. (2010) and Onut and Doner (2008) 
suggest that a small perturbation in the decision 
weights may have a significant impact on the choice 
of the final candidate site. The disadvantage with 

these techniques is that only a few different 
configurations of weights can be permutated since the 
total is governed by the number of criteria, which in 
most research is rarely more than 10, and the author 
deems this as not enough. As a result, this study 
adopted Stochastic Multicriteria Acceptability 
Analysis (SMAA) methods to carry out sensitivity 
analysis and determine the probability of changes in 
the ranking of the final seven landfill sites. SMAA 
methods use at least 10,000 simulations, which are 
enough to get a uniform distribution on the weight 
space, and gives sufficient accuracy to the final 
rankings of alternative sites. SMAA methods have 
been used successfully in siting problems, see e.g. 
Hokkanen et al. (1999) and Lahdelma et al. (2002). 
For a full description of the SMAA methods, see 
Tervonen and Figueira (2008), and for the actual 
algorithms, Tervonen and Lahdelma (2007). These 
problems have included environmental and/or socio-
economic criteria that are also present in this study.  

 
Table 9: Overall dominance scores 

Site pair iiD   
Site pair iiD   

Site pair iiD   
Site pair iiD   

Site pair iiD   
L1,L2 0.7944 L2,L5 0.2967 L4,L1 0.2056 L5,L4 0.5965 L7,L1 0.4855 
L1,L3 0.7393 L2,L6 0.2967 L4,L2 0.6365 L5,L6 0.2887 L7,L2 0.5135 
L1,L4 0.7944 L2,L7 0.4865 L4,L3 0.5815 L5,L7 0.2217 L7,L3 0.5965 
L1,L5 0.7475 L3,L1 0.2607 L4,L5 0.4035 L6,L1 0.4185 L7,L4 0.5027 
L1,L6 0.5815 L3,L2 0.5134 L4,L6 0.2138 L6,L2 0.7033 L7,L5 0.7783 
L1,L7 0.5145 L3,L4 0.4185 L4,L7 0.4973 L6,L3 0.7393 L7,L6 0.7783 
L2,L1 0.2056 L3,L5 0.2607 L5,L1 0.2525 L6,L4 0.7862   
L2,L3 0.4866 L3,L6 0.2607 L5,L2 0.7033 L6,L5 0.7113   
L2,L4 0.3635 L3,L7 0.4035 L5,L3 0.7393 L6,L7 0.2217   

 
Table 10: Appraisal score and rank of each landfill site 

Site L1 L2 L3 L4 L5 L6 L7 

iS
 

0.3483 0.0802 0.0811 0.0883 0.0963 0.1574 0.2357 

Rank 1 7 6 5 4 3 2 
Latitude 15o47’24’’S 15o51’45’’S 15o43’11’’S 15o44’55’’S 15o46’59’’S 15o45’40’’S 15o50’07’’S 
Longitude 34o58’57’’E 35o05’13’’E 35o01’38’’E 35o05’39’’E 35o03’16’’E 35o02’59’’E 35o01’18’’E 
 

In this paper, only the SMAA-2 model was used, 
more specifically emphasis was on one of its 
descriptive measures, the Rank Acceptability Index 
(Lahdelma and Salminen, 2001). It measures the 
probability that an alternative acquires a certain 
position or rank given a set of alternatives, which are 
considered the best. This is achieved by calculating 
what proportion of weights will grant an alternative a 
certain rank. Since it is a probability, the rank 
acceptability indices range between 0 and 1. An index 
value of 0 for a certain rank or position indicates that 
the alternative will never obtain that rank, whilst an 

index value of 1 indicates that its very highly likely 
that alternative will always obtain that rank or position 
given any selected weights. Hence, the rank 
acceptability indices are considered a measure of 
robustness as far as the choice of an alternative in 
concerned (Lahdelma et al., 2002; Tervonen and 
Figueira, 2008; Tervonen and Lahdelma, 2007; 
Lahdelma and Salminen, 2001). When applied to this 
study the Rank Acceptability Indices are shown 
numerically in Table 11 and illustrated graphically by 
Figure 8. 
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Table 11: Rank Acceptability Indices 
Landfill Site Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 
L1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 
L2 0.000 0.000 0.434 0.000 0.000 0.000 0.566 
L3 0.000 0.000 0.002 0.000 0.822 0.018 0.158 
L4 0.000 0.433 0.000 0.003 0.000 0.564 0.000 
L5 0.000 0.000 0.000 0.840 0.148 0.000 0.012 
L6 0.000 0.000 0.564 0.157 0.030 0.012 0.237 
L7 0.000 0.567 0.000 0.000 0.000 0.406 0.027 

 
As can be seen from Table 11 and Figure 8, the 

resulting indices gave high first rank acceptability to 
landfill site L1. Landfill sites L7, L6 and L5 had high 
acceptability’s as rank 2, 3 and 4 respectively. These 
first four ranks were the same as those obtained from 
the EVAMIX approach (see Table 10). Landfill sites 
L3 and L4 were ranked 5th and 6th according to their 
acceptability indices, which was a direct swap to the 
rankings obtained by the EVAMIX approach. Finally, 

landfill site L2 was ranked 7th, the same in Table 11 as 
in Table 10. The fact that 10,000 simulations had a 
small impact on the ranking of the sites other than a 
direct swap of rankings for two sites reveals that the 
degree of domination of landfill site L1 and the 
subsequent ranking of the other sites was independent 
of changes in the weights associated with the selected 
criteria. 

 

 
Figure 8: Graphic illustration of Rank Acceptability Indices 

 
4.0 Conclusions 

The main goal of this research was to investigate 
whether GIS, SA, fuzzy AHP combined with the 
EVAMIX approach, is an attractive alternative for 
solving multi-objective site location problems. SA set 
the tone for this research by providing a platform on 
which one can solve a problem with more than one 
objective, which was highlighted within the case study 
by the two objectives represented by Eq. (30) and Eq. 
(31). By using SA, issues related to optimization and 
large spatial areas were also addressed. Regarding 
this, previous research utilizing optimization 
algorithms such as linear programming tools to solve 
landfill siting or location allocation problems (Arthur 

and Nalle, 1997; Aerts et al., 2003; Cova and Church, 
2000) have encountered limitations related to the 
spatial area that could be optimized. This problem 
arises because each map layer in a GIS by itself can 
consist of complex information on attribute values, 
and spatial relationships between attributes. When a 
large number of layers are involved in GIS analysis 
(as is normally the case), relationships between layers, 
and within themselves have to be considered. This 
often leads to a large solution space from which linear 
programming solvers find the spatial area too large to 
explore. In consequence, this exploration is time 
consuming and, in worse circumstances, linear 
programming models can get trapped in local minima. 
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SA, however, addresses these problems by allowing 
the user to set a large enough initial control 
temperature, for example 100,000, to be large enough 
such that the algorithm can traverse a large solution 
space and still find an optimum solution. In addition, 
SA offers options for not getting trapped in local 
minima e.g. fixed probabilities, Tsallis’ Acceptance 
Rule and Boltz-man’s distribution, hence is a much 
faster and robust optimization algorithm. Since 
decision makers use during pairwise comparison, a 
measurement scale is thus required. 

Fuzzy AHP provided the author with a way to 
take into account the intrinsic imprecision, uncertainty 
and subjectivity of linguistic terms or verbal 
judgements used by decision makers when faced with 
multi-attribute data during pairwise comparison. 
Using the EVAMIX approach allowed the author to 
be able to use both quantitative (cardinal) and 
qualitative (ordinal) criteria within the same model. 
This unique feature gives EVAMIX much greater 
flexibility and differentiates it from other MCDA 
methods such as weighted summation, range of value 
method, PROMETHEE II etc., which are incorrectly 
applied to ordinal data by treating it as though they 
were at a cardinal measurement scale. 

The above reasons and the fact that not one 
single MCDA method on its own includes all these 
attributes help to explain why this integrated approach 
is useful not only for the case study but also for other 
site location problems. In addition, the results from 
the methodology were further supported during 
sensitivity analysis using the SMAA-2 model. 

The case study in Blantyre City, Malawi to 
which the methodology was applied, clearly shows the 
potential of the approach in a decision support setting. 
The methodology was able to provide 7 alternative 
landfill sites ranked form best to worst. 
 
Corresponding Author: 
Rodney Godfrey Tsiko 
Department of Geoinformatics and Surveying  
University of Zimbabwe 
P.O Box MP167 Mount Pleasant 
Harare, Zimbabwe 
E-mail: tsikoruz@yahoo.com  
 
References 
1. van Laarhoven PJM, Aarts EHL. Simulated 

Annealing: Theory and Applications. Dordrecht, 
Boston, Norwell, Massachusetts: D. Reidel, 
Kluwer Academic Publishers; 1987. 

2. Kirkpatrick S, Gelatt CD Jr., Vecchi MP. 
Optimization by simulated annealing. Science 
1983, 220 (4598), 671-680. 

3. Cerny V. Thermodynamical approach to the 
travelling salesman problem: an efficient 

simulation algorithm. Journal of Optimization 
Theory Applications 1985, 45 (1), 41-51. 

4. Burrough PA, McDonnell RA. Principles of 
Geographical Information Systems. Oxford 
University Press; 1998. 

5. Heywood I, Cornelius S, Carver S. An 
Introduction to Geographical Information 
Systems, 2nd ed. Toronto: Pearson Education 
Limited; 2006. 

6. Longley PA, Goodchild MF, Maguire DJ, Rhind 
DW. Geographical Information Systems and 
Science, 3rd ed. Toronto: John Wiley and Sons; 
2010. 

7. Bellman RE, Zadeh LA. Decision-making in a 
fuzzy environment. Management Science 1970, 
17, 141-164. 

8. Saaty TL. The Analytical Hierarchy Process: 
Planning, Priority Setting, Resource Allocation. 
New York: McGraw-Hill; 1980.  

9. Saaty TL. Axiomatic Foundation of the Analytic 
Hierarchy Process. Management Science 1986, 
32(7), 841-855. 

10. Chang DY. Applications of the extent analysis 
method on fuzzy AHP. European Journal of 
Operational Research 1996, 95, 649-655. 

11. Voogd H. Multicriterion evaluation with mixed 
qualitative and quantitative data. Environmental 
and Planning Bulletin 1982, 9, 221-236. 

12. Nijkamp P, Rietveld P, Voogd H. Multicriteria 
Evaluation in Physical Planning. North Holland, 
Amsterdam; 1990, pp. 65-100. 

13. Martel JM, Matarazzo B. Other outranking 
approaches. In: Figueira, J., Salvatore, G., 
Ehrgott, M. (Eds), Multiple Criteria Decision 
Analysis: State of the Art Surveys. New York: 
Springer; 2005, pp. 197-262. 

14. Hajkowicz S, Higgins A. A Comparison of 
Multiple Criteria Analysis Techniques for Water 
Resource Management. European Journal of 
Operations Research 2008, 184 (1), 255-265. 

15. Brans JP, Mareschal B, Vincke PH. How to 
select and how to rank projects: The 
PROMETHEE method. European Journal of 
Operations Research 1986, 24(2), 228-238. 

16. Figueira J, Greco S, Ehrgott M. Multiple Criteria 
Decision Analysis: State of the Art Surveys. 
Springer Verlag; 2005. 

17. Arthur JL, Nalle DJ. Clarification on the Use of 
Linear Programming and GIS for Land Use 
Modelling. International Journal of 
Geographical Information Science 1997, 11, 
397-402. 

18. Aarts JCJH, Eisinger E, Heuvelink GBM and 
Stewart TJ. Using Linear Integer Programming 
for Multi-Site Land Use Allocation. 
Geographical Analysis 2003, 35 (2), 148-169. 



 Journal of American Science 2016;12(10)           http://www.jofamericanscience.org 

 

32 

19. Cova T J, Church RL. Contiguity Constraints for 
Single-Region Site Search Problems. 
Geographical Analysis 2000, 32, 306-329. 

20. Lockwood C, Moore T. Harvest scheduling with 
spatial constraints a Simulated Annealing 
approach. Canadian Journal of Forest Reserve 
1993, 23, 468-478. 

21. Murray AT, Church RL. Measuring the efficacy 
of adjacency constraints structure in forest 
planning models. Canadian Journal of Forest 
Reserve 1995, 25, 1416-1424. 

22. Muttiah RS, Engel BA, Jones DD. Waste 
Disposal Site Selection Using GIS-based 
Simulated Annealing. Computers & Geosciences 
1996, 22 (9), 1013-1017. 

23. Brookes CJ. A parameterized region-growing 
program for site allocation on raster suitability 
maps. International Journal of Geographical 
Information Science 1997, 11, 375-396. 

24. Boston K, Bettinger P. An Analysis of Monte 
Carlo Integer Programming, Simulated 
Annealing, and Tabu Search Heuristics for 
Solving Spatial Harvest Scheduling Problems. 
Forest Science 1999, 45, 292-301. 

25. Karaganis A, Mimis A. A Geographical 
Information System Framework for Evaluating 
the Optimum Location of Point-Like Facilities. 
Asian Journal of Information Technology 2011, 
10 (4), 129-135. 

26. Pincus M. A Monte Carlo Method for the 
Approximate Solution of Certain Types of 
Constrained Optimization Problems. Operations 
Research 1970, 18, 1225-1228. 

27. Eglese RW. Simulated annealing: a tool for 
operational research. European Journal of 
Operational Research 1990, 46, 271-281. 

28. Koulamas C, Antony SR, Jaen R. A survey of 
simulated annealing applications to operations-
research problems. OMEGA- International 
Journal of Management Science 1994, 22, 41-56. 

29. Fleischer MA. Simulated annealing: past, present 
and future. In: C Alexopoulos, K Kang, WR 
Lilegdon and D Goldsman (eds.), Proceedings of 
the 1995 Winter Simulation Conference, IEEE 
Press; 1995, pp. 155-161. 

30. Aarts EHL, Korst J. Simulated Annealing and 
Boltzmann Machines: A Stochastic Approach to 
Combinatorial Optimization and Neural 
Computing. Chichester, England: John Wiley & 
Sons; 1989. 

31. Aarts EHL, Lenstra, JK. Local Search in 
Combinatorial Optimization. Chichester, 
England: John Wiley & Sons; 1997. 

32. Pardolas PM, Romeijn HE. (Eds). Handbook of 
global optimization volume II. Kluwer 
Academic, Dordrecht; 2002. 

33. Berne JL, Baselga S. First – order design of 
geodetic networks using the simulated annealing 
method. Journal of Geodesy 2003, (78), 47-54. 

34. Voogd H. Multicriteria Evaluation for Urban 
and Regional Planning. London: Pion Limited; 
1983. 

35. Chatterjee P, Athawale VM, Chakraborty S. 
Material Selection Using Complex Proportional 
Assessment and Evaluation of Mixed Data 
Methods. Material and Design 2011, 32(2), 851-
860. 

36. Darji VP, Rao RV. Application of 
AHP/EVAMIX Method for Decision Making in 
the Industrial Environment. American Journal of 
Operations Research 2013, 3, 542-569. 

37. Chung ES, Lee KS. Identification of Spatial 
Ranking of Hydrological Vulnerability Using 
Multi-Criteria Decision Making Techniques: 
Case Study of Korea. Water Resource 
Management 2009, 23(12), 2395-2416. 

38. Ustinovichius L, Zavadskas EK, Podvezko V. 
Application of a Quantitative Multiple Criteria 
Decision Making (MCDM-1) Approach to the 
Analysis of Investments in Construction. Control 
and Cybernetics 2007, 36(1), 251-268. 

39. Jeffreys I. The Use of Compensatory and Non-
Compensatory Multi-Criteria Analysis for Small-
Scale Forestry. Small-Scale Forest Ecol Manage 
Policy 2004, 3(1), 99-117. 

40. Kaufmann A, Gupta MM. Fuzzy Mathematical 
Models in Engineering and Management 
Science. New York, USA: Elsevier Science Inc.; 
1988. 

41. Zadeh LA. Fuzzy Sets. Information Control 
1965, 8, 338-353.  

42. Modarres M, Sadi-nezhad S, Aarbi F. Fuzzy 
analytical hierarchy process using preference 
ration: A case study for selecting management 
short course in a business school. International 
Journal of Industrial Engineering Computations 
1 2010, 173-184. 

43. Modarres M, Sadi-Nezhad S. Ranking fuzzy 
numbers by preference ratio. Fuzzy Sets and 
Systems 2001, 118, 429-436. 

44. Matope J. Blantyre City Environmental Profile. 
UNDP, UN-HABITAT; 2000. 

45. Berman S. Living with Garbage [online]. The 
Star. 2011. Available from: 
http://thestar.blogs.com/africa/author-sarah-
berman/. [Accessed 3 February 2014]. 

46. UN-HABITAT. Malawi: Blantyre Urban 
Profile. Nairobi: UN-HABITAT; 2011.  

47. Love RR, Morris JG, Wesolowsky GO. Facilities 
Location, Models and Methods. North Holland; 
1998. 



 Journal of American Science 2016;12(10)           http://www.jofamericanscience.org 

 

33 

48. Apparicio P, Abdelmajid M, Riva M, Shearmur 
R. Comparing alternative approaches to 
measuring the geographical accessibility of urban 
health services: Distance types and aggregation-
error issues. Int. J. Health Geographics 2008, 7, 
7-7. 

49. Corana A, Marchesi C, Martini C, Ridella S. 
Minimizing multimodal functions of continuous 
variables with the simulated annealing algorithm. 
ACM Transactions on Mathematical Software 
1987, 13(3), 262-280. 

50. Zeiss C, Lefsrud L. “Analytical Framework for 
Facility Waste Siting.” Journal of Urban 
Planning and Development – ASCE 1995 121(4), 
115–145. 

51. Wang G, Qin L, Li G, Chen, L. “Landfill Site 
Selection Using Spatial Information 
Technologies and AHP: A Case Study in Beijing, 
China.” Journal of Environmental Management 
2009, 90, 2414–2421. 

52. Siddiqui MZ, Everoett JW, Vieux BE. Landfill 
Siting Geographical Information Systems: A 
Demonstration. Journal of Environmental 
Engineering –ASCE 1996, 122(6), 515–523. 

53. Sener B, Suzen L, Doyuran V. “Landfill Site 
Selection by Using Geographic Information 
Systems.” Environmental Geology 2006, 49, 
376–388. 

54. Kontos TD, Komilis DP, Halvadakis, CP. “Siting 
MSW Landfills on Lesvos Island with a GIS-
Based Methodology.” Waste Management 
Resources 2003, 21, 262–278. 

55. Gemitzi A, Tsihrintzis VA, Voudrias V, Petalas 
C, Stravodimos G. Combining Geographic 
Information Systems, Multi-Criteria Evaluation 
Technique and Fuzzy Logic in Siting MSW 
Landfills. Environmental Geology 2007, 51, 797-
811.  

56. Lin HY, Kao JJ. Enhanced Spatial Model for 
Landfill Siting Analysis. Environmental 
Engineering – ASCE 1999, 125(9), 845-851. 

57. Tayyebi AH, Delavar MR, Tayyebi A, Golobi M. 
Combining Multi criteria decision making and 
dempster shafer theory for landfill site selection. 
International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Science 
2010, 38 (8), 1073-1078. 

58. Onut S, Efendigil T, Kara SS. A combined fuzzy 
MCDM approach for selecting shopping centre 
site; An example from Istanbul, Turkey. Expert 
Systems with Applications 2010, 37, 1973-1980. 

59. Onut D, Soner S. Transhipment site selection 
using the AHP and TOPSIS approaches under 
fuzzy environment. Waste Management 2008, 
28, 1552-1559. 

60. Hokkanen J, Lahdelma R, Salminen P. A 
multiple criteria decision model for analysing 
and choosing among different development 
patterns for the Helsinki cargo harbour. Socio-
Economic Sciences 1999, 33, 1-23. 

61. Lahdelma R, Salminen P, Hokkanen J. Locating 
a waste treatment facility by using stochastic 
multicriteria acceptability analysis with ordinal 
criteria. European Journal of Operational 
Research 2002, 142, 345-356. 

62. Tervonen T, Figueira JR. A survey on Stochastic 
Multicriteria Acceptability Analysis Methods. 
Journal of Multi-Criteria Decision Analysis 
2008, 15, 1-14. 

63. Tervonen T, Lahdelma R. Implementing 
stochastic multicriteria acceptability analysis. 
European Journal of Operational Research 
2007, 178(2), 500-513. 

64. Lahdelma R, Salminen P. SMAA-2: stochastic 
multicriteria acceptability analysis for group 
decision making. Operations Research 2001, 
49(3), 444-454. 

  
 
 
10/13/2016 


