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Abstract: In this paper we introduce the notation of tiling chaotic manifold. We also study some geometric 
characters on chaotic manifold. The fractal folding of chaotic manifold is discussed. The fractal tiling , is a tiling 
which possesses self- similarity and the boundary of which is a fractal, is presented. Some applications in real life 
on chaos theory are achieved. 
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1. Introduction 

The word ‘chaos’ takes on many 
connotations. Mathematicians, however, have 
narrowed the meaning of the word to explain "the 
reason for unpredictable behavior". Then how does 
chaos theory fit in? "Chaos theory attempts to explain 
the fact that complex and unpredictable results that 
can and will occur in systems that are sensitive to 
their initial conditions". Andrew Ho dispels some 
"misconceptions" about the meaning of chaos theory: 
"Chaos theory is not about disorder . . . . the ‘chaos’ 
in chaos theory is order–not simply order, but the 
very essence of order". To illustrate this point, shapes 
scientists described as "grainy, hydra like, in 
between, pimply, . . . sea weedy, . . ." can now be 
described in a mathematical way. This new branch of 
mathematics is still in its infancy, though. For 
example, the motion of pool balls can be predicted 
accurately only a few seconds into the future, 
because small "imperfections" begin to affect the ball 
immediately. Several principles in chaos theory exist. 
Two of the most important are that complex systems 
have an underlying order, and that simple systems 
can produce complex behavior. Fundamental 
components of chaos theory are fractals, imaged sets 
of numbers that always resemble the original image 
when magnified, area. A tree, for example, is nothing 
more than miniscule copies of itself. A large branch 
has smaller branches that are similar to the large 
branch. The smaller branches are composed of twigs, 
the twigs composed of even smaller parts. The twig is 
a replica of the smaller branch, and the large branch 
is a replica of the entire tree. Chaos theory is utilized 
in computer systems for creating virtual worlds. 
Fractals are helpful in creating realistic clouds, rocks, 
and shadows. Fractals are also effectively used in 

image compression and movie special effects. Texas 
Instruments used chaos theory in a project to make a 
new chipset for the conversion of analog signals to 
their digital counterpart. To create the new chip, 
Texas Instruments’ engineers modeled simple genes: 
"If gene A is active and gene B is not, then activate 
gene C". This created a small amount of complexity, 
enough to make the new chipset more effective than 
predecessors. A system is called chaotic if it is 
impossible to make accurate long-term predictions 
about the behavior of the system. One of the first 
researchers in chaos theory was a meteorologist, 
Edward Lorenz. He was using a set of equations to 
model the weather. When he solved the system 
numerically, he found that a particle moving subject 
to atmospheric forces has a very complicated 
trajectory. He also found that any such a trajectory 
always approaches the same general pattern of an 
attractor. This pattern is butterfly shaped and is now 
known as the Lorenz attractor. The conclusion of 
these observations is that a very small change in 
initial conditions can produce unpredictable and 
sometimes drastic results by triggering a series of 
increasingly significant events. In theory, the flutter 
of a butterfly's wings in Australia could, for example, 
produce a snowstorm in the Northeastern, thousands 
of miles away. Chaos theory is being applied to many 
real world situations in nature, at work, in financial 
markets, and in computer technology. Toby 
Tenenbaum argues for "nonlinear work 
[environments]." He says workers are more 
independent; they can work anytime. A chaotic 
organizational method would be more effective than 
the traditional self-organizing method. He feels that 
chaos in management can be beneficial to an 
organization, creating a "nonlinear world of work". 
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Mathematicians and physicists have entered Wall 
Street because brokers are interested in creating a 
model of the stock market. The purpose of the model 
is to predict crashes and other unforeseen risk 
investors are taking. The difficulty of creating a 
workable model is in the form of a paradox. In the 
short term, the market seems to behave randomly, but 
long term behavior seems "deterministic." However, 
it has been resolved that this paradox can exist 
because the long-term result is built on random short-
term results [5, 6, 14, 17 and 23]. 
Benoit Mandelbrot coined fractal from the Latin 
adjective fractus. The corresponding Latin verb 
frangere means, "to break": to create irregular 
fragments. It is therefore sensible-and how 
appropriate for our needs! -That, in addition to 
"fragmented", fractus should also mean "irregular," 
both meanings being preserved in fragment. This 
means that a “fractal” is a rough or fragmented 
geometric shape that can be subdivided in parts, each 
of which is (at least approximately) a reduced/size 
copy of the whole. Mathematically, a “fractal” is a 
set of points whose fractal dimension exceeds its 
topological dimension. In other words, a “fractal” is a 
geometrical figure that has the following properties: 
- The geometrical figure has self-similarity, 
- The geometrical figure has a dimension that 
is not an integer. 
Fractals appear to be more popular in the status quo 
for their aesthetic nature than they are for their 
mathematics. Everyone who has seen a fractal has 
admired the beauty of a colorful, fascinating image, 
but what is the formula that makes up this glitzy 
image? The classical “Euclidean geometry” that one 
learns in school is quite different than the “fractal 
geometry” mainly because fractal geometry concerns 
nonlinear, nonintegral systems while Euclidean 
geometry is mainly oriented around linear, integral 
systems. Hence, Euclidean geometry is a description 
of lines, ellipses, circles, etc. However, fractal 
geometry is a description of algorithms. There are 
two basic properties that constitute a fractal. First, is 
self-similarity, which is to say that most magnified 
images of fractals are essentially indistinguishable 
from the unmagnified version. A fractal shape will 
look almost, or even exactly, the same no matter 
what size it is viewed at. This repetitive pattern gives 
fractals their aesthetic nature. Second, fractals have 
non-integer dimensions. This means that they are 
entirely different from the graphs of lines and conic 
sections that we have learned about in fundamental 
Euclidean geometry classes [1, 4, 8, 11, 12, and 15].  
 

A tiling of spherical, Euclidean or hyperbolic 
plane is a collection   of polygons, called tiles, that 
completely cover the plane without overlaps or gaps. 

The sides or edges of the tiles are called the edges of 
the tiling and the vertices of the tiles are the vertices 
of the tiling. The art of tilings and patterns can be 
found in the history of all ancient civilizations. 
However, the mathematical theory of tilings is 
comparatively recent and many aspects of the subject 
are still unexplored. New constructions of tilings are 
discovered from time to time. For instance, in the 
1960, sets of prototiles were discovered which admit 
infinitely many tilings of the plane but those tilings 
were all non periodic, i.e. they did not possess 
translational symmetry. The Penrose tilings are 
remarkable examples which have local five-fold 
rotational symmetry but with no translational 
repetition [7].  

 
2. Definitions 

1. A 
kC  n-dimensional manifold M  is a non-

empty (second-countable, Hausdorff) topological 
space such that:  

(a) M is the union of open subsets U , and each 

U is equipped with a homoeomorphism  , taking 

U  to an open set in R
n

,i.e. 

nRUU  )(:    

(b) If  UU  , then the overlap map  

)()(:1
  UUUU  

 is a 

smooth map (See Fig. (1)). 
 
 
 
  
  
      
      
  
 
 
 

 
 
 

Fig. (1) 
 
 

Each pair ),(  U  is called a “chart” on M and 

the collection  ),(  UA   of all charts is called 

a “(smooth) atlas” on M . The space M taken 

together with atlas A  will be called a “smooth 
manifold of dimension n” or “ smooth n-manifold” or 

“
C  n-manifold”. 
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Moreover, if the topological space M satisfies 
condition (a) only the manifold will be called a 
“topological manifold” or simply a “manifold”[2].  
2. The field of folding began with S. A. 

Robertson’s work, in 1977, on isometric folding 
of a Riemannian manifold M into another N, 
which send any piecewise geodesic path in M to 
a piecewise geodesic path with the same length 
in N [22]. More studies on the folding of 
manifolds are studied in[3, 9, 10, and 18-20]. 

3. A subset A of a topological space X is called a 
“retract” of X if there exists a continuous map 

AXr :  (called a retraction) such that 

Aaaar )( , where A is closed and X 

is open [13, and 16].  
4. The chaotic manifold is a manifold changed by 

the time into homeomorphic manifolds either 

with fixed point niPi ,...,2,1,  , see Fig.(2), 

or with no-fixed point , see Fig.(3).[21] 
 
 
 
 
 
 
 
          
 
 

 
 
 
 
 
 
 
 

 
3. Main results  
Aiming to our study we will introduce the following: 
 The tiling of chaotic manifold which has n-

physical character is a tiling for 1n  manifolds 

TTTT nhhhh ,....,, 210  , where T h0  is the tiling for 

the geometric manifold, where T h1  is the tiling of 

the first chaotic manifold, where T h2  is the tiling of 

the second chaotic manifold, …, and where T nh  is 

the tiling of n- chaotic manifold. 
We will discuss the types of tiling of chaotic 
manifolds: 
If we consider a chaotic manifold  , see Fig.(4). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Where,  is the geometric manifold and 
 ,  are the chaotic manifolds, on the geometric 

manifold, which have some physical characters but 
this physical characters on the chaotic manifolds may 
be the same or different characters. The tiling of 
chaotic manifold are based on two variables the first 
one is the physical characters (same or different) and 
the second one depend on the closed and open of the 
chaotic manifold (geometric or chaotic).  
Therefore, we have four cases: 
Case1: If the chaotic manifold  , in which the 
geometric manifold is closed and the chaotic are 
open, then by the definition of tiling any tiling of 
geometric manifold does not implies to tiling of 
chaotic one , see Fig.(5) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Remark: The chaotic manifold is open or 
closed according to the physical characters.  
Case2: If the geometric and chaotic are closed, then 
tiling of  implies to tiling of  and . Also, 

Fig.2 
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we can do the tiling for any chaotic manifold  or 
  without doing tiling to the geometric manifold. 

Case3: If the geometric manifold is open and the 
chaotic is closed, then tiling of  and   does not 

implies to tiling of .  
Case4: If the geometric and chaotic are open , then 
we cannot doing any tiling for geometric and chaotic 
manifolds.  
From the above discussion we will arrive to the 
following theorem. 
Theorem1. Under tiling of chaotic manifold the local 
variation of the chaotic manifold is in the sectional 
curvature only. 
 
 Now we will discuss the geometric 
transformation on the chaotic manifold and the 
relations between them. 
We will define a type of folding:  

 . 
 
The fractal folding of a chaotic manifold is defined 
by: 
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There are a corresponding induced sequences of 
folding 
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Thus, the following theorems are obtained. 
Theorem 2. Any fractal folding of the geometric 
manifold  induces fractal folding of every pure 
chaotic manifold. 
Theorem 3. The end of the limit of fractal folding of 
chaotic manifold is equal to the end of its retractions.  
Theorem 4. The fractal retraction of the geometric 
chaotic manifold induces a fractal dimensional of the 
pure chaotic manifold but the inverse is not true. 
  
 Finally, we discuss the fractal tiling of 
chaotic manifold. Fractals and tiling are two fields in 
mathematics that are generally thought of as separate. 
However, they can be combined to form a variety of 
visually appealing constructs that possess fractal 
character and at the same time obey many of the 
properties of tiling. Since a tiling is defined as a 
countable family of closed sets (tiles) that cover the 
plane without gaps or overlaps. The constructs 
described in this paper do not cover the entire 
Euclidean plane, however, they do obey the 
restrictions on gaps and overlaps. In the chaotic 
manifold each tile is a closed topological disc. The 
fractal tilings are also edge to edge unless otherwise 
noted, i.e. the corners and sides of the tiles coincide 
with the vertices and edges of the tilings. However, 
they are not well behaved by the criteria of normal 
tilings in one particular, namely they contain singular 
points, defined as follows: every circular disc, 
however small centered at a singular points meets an 
infinite number of tiles. Since any fractal tiling of the 
general sort described here will contains singular 
points, this will be not be considered a property that 
presents a fractal tiling from being described as well- 
behaved. 
 
  Thus the fractal tiling share the following 
properties: 
 

a. Each fractal tiling is constructed from a 
single prototile, to which all the tiles are 
similar. 

b.  The prototiles have edges of two lengths, 
denoted ‘‘long’’ and ‘‘short’’. 

c. The fractal tiling is by design edge to edge. 
As a consequence of this choice, from a 
given generation of tiles to the next smaller 
generation, the tiles are scaled by the ratio 
of the short to long edges of the prototile. 
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d. The fractal tiling is bounded in the Euclidean 
plane. 

 
4. Some applications of chaos theory in real life 
  Chaos even has applications outside of 
science. Computer art has become more realistic 
through the use of chaos and fractals. Now, with a 
simple formula, a computer can create a beautiful and 
realistic tree. Instead of following a regular pattern, the 
bark of a tree can be created according to a formula 
that almost, but not quite, repeats itself. Chaos has 
already had a lasting effect on science, yet there is 
much still left to be discovered. Many scientists 
believe that twentieth century science will be known 
for only three theories: relativity, quantum mechanics, 
and chaos. Aspects of chaos show up everywhere 
around the world, from the currents of the ocean and 
the flow of blood through fractal blood vessels to the 
branches of trees and the effects of turbulence. Chaos 
has inescapably become part of modern science. As 
chaos changed from a little-known theory to a full 
science of its own, it has received widespread 
publicity. Chaos theory has changed the direction of 
science: in the eyes of the general public, physics is no 
longer simply the study of subatomic particles in a 
billion-dollar particle accelerator, but the study of 
chaotic systems and how they work. Finally, 
understanding chaos understands life. 
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