Day 3 serum levels of Inhibin – B, FSH and Transvaginal Ultrasound as Predictors for Ovarian Reserve in IVF cycles

Amr A. Aziz Khalifa, Magdi A. Gawad Mohamed, Tagrid M. Mohamed

Obstetrics and Gynaecology Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt.

dr_amraziz@hotmail.com

Abstract: Background: Ovarian reserve is the remaining of resting and primary ovarian follicles and is used to define the quantity and quality of follicles present in the ovaries at a given time. Ultrasonographic markers of ovarian reserve are non invasive, however, they cannot predict future of the ovarian response to IVF cycle. inhibin B can be used in the same way as estradiol to monitor the follicular growth and correlates with the number of oocytes retrieved and fertilized. The aim of this study is to evaluate the role of cycle day 3 serum inhibin- B concentration, FSH and different ultrasound parameters in the prediction of ovarian reserve and fertility potential (pregnancy).

Patients and methods: fifty women undergoing for their first IVF cycle in a pregnancy attempt were included. All patients underwent controlled ovarian hyperstimulation after baseline assessment of hormonal profile and ultrasound parameters, Transvaginal ultrasound monitor of ovarian response was conducted to assess ovarian response.

Results: Day-3 antral follicle count and inhibin-B were more sensitive and specific than either day-3 ovarian volume or day-3 FSH in prediction of poor ovarian response (97% and 99% in antral follicle count and 95% and 99% in inhibin-B vs. 91% and 99% in ovarian volume and 40% and 35% in FSH, respectively). Also, day-3 antral follicle count and inhibin –B have higher predictivity for ovarian response than either day-3 OV or day-3 FSH (positive and negative predictive value was 98% and 99% in inhibin-B and AFC vs. 94% and 92% in ovarian volume and 47% and 50% in FSH, respectively). Conclusions: the predictive value of cycle day-3 inhibin-B and antral follicle counts regards assessment of ovarian reserve is higher compared to ovarian volume or cycle day-3 FSH. Basal-inhibin-B and antral follicle count have more or less similar value in predicting the ovarian reserve and the ovarian response to controlled ovarian stimulation in women undergoing infertility treatment with IVF.

Keywords: ovarian reserve, inhibin-B, FSH, ultrasound, ultrasonography, IVF, antral follicle count, ovarian volume, AFC, OV

1. Introduction:

The ovaries of the human female contain a number of immature, primordial follicles. These follicles each contain a similarly immature primary oocyte. After puberty and commencing with the first menstruation, a clutch of follicles begins folliculogenesis. (1) Folliculogenesis describes the progression of a number of small primordial follicles into large preovulatory follicles that enter the menstrual cycle, it ends when the remaining follicles in the ovaries are incapable of responding to the hormonal cues that previously recruited some follicles to mature. This depletion in follicle supply signals the beginning of menopause. (2)

As women age, double-strand breaks accumulate in their primordial follicle reserve. These follicles contain primary oocytes that are arrested in prophase of the first meiotic division. It was hypothesized that DNA double-strand break repair is vital for the maintenance of oocyte reserve, and that a decline in efficiency of repair with age plays a key role in the depletion of the ovarian reserve. (3)

Ovarian reserve is the remaining of resting and primary ovarian follicles and is used to define the quantity and quality of follicles present in the ovaries at a given time. (4) The decline in fecundity with female age, long before menopause occurs, is a well-known phenomenon. (5)

The timing of the menopause, caused by dysfunctional ovaries, is determined by the store of germ cells and the rate of depletion during life. The evaluation of ovarian reserve has been and still the focus of substantial clinical research. (6,7)

Measurement of ovarian reserve can only be approximated as precise tests. (8) The methods for assessing ovarian reserve are classified into two groups: Passive tests; age (9,10), cycle day 3 serum follicle stimulating hormone (FSH) concentration (11,12), basal FSH/LH ratios (12,13), cycle day 3 serum estradiol concentration (14-16), cycle day 10 serum progesterone concentration (17), cycle day 3 serum inhibin B concentration (18-22), serum Anti-müllerian hormone (AMH) level (19,23-25), ovarian volume (OV) (26-28), antral follicle count (AFC) (29-33), ovarian biopsies (34-36), ovarian stromal
Doppler (37-40). Dynamic tests; Gonadotrophin agonist stimulation test(9,41,42), clomiphene citrate challenge test(42-44), exogenous FSH ovarian reserve test (45,46).

Transvaginal ultrasonography (TVS) is suggested to be the preferred method for ovarian reserve determination rather than hormonal parameters, as TVS assessment of OV and the AFC confer a stronger correlation with chronological aging than Day 3 FSH level indices and aging.(28) The greatest advantage of ultrasonographic markers of ovarian reserve is their non invasiveness. The use of sonographic methods are somewhat limited, however, as they cannot predict future or the ovarian response to IVF treatment.(47,48)

Inhibins are glycoproteins produced by the granulosa and theca cells of the ovary and by the sertoli cells of the testis.(49) Inhibins are multifunctional molecules involved in the control of pituitary FSH secretion.(12) Both observational and experimental evidence in women suggests that inhibins are physiologically important regulators of FSH secretion.(50) At late reproductive years, regularly cycling women with elevated day 3 FSH levels have lower inhibin A and inhibin B levels compared to age-matched controls with normal FSH levels.(51) Apart from their essential role in the selective control of FSH secretion, inhibins are currently recognized as paracrine ovarian and testicular regulators and have multiple paracrine effects in the utero-placental unit, representing a promising marker for male and female infertility, gynecological and gestational diseases.(52)

During controlled ovarian stimulation for assisted reproduction treatment, inhibin B can be used in the same way as estradiol to monitor the follicular growth and correlates with the number of oocytes retrieved (53) and fertilized. (54) Inhibin B has also been evaluated as an additional marker to predict the response to ovulation induction in women whose main infertility factor was ovulatory dysfunction but, in such cases, it does not appear to be of clinical relevance. This is not surprising because anovulatory women who fail to respond to ovulation induction might have this resistance explained by a number of alternative mechanisms, apart from a diminished ovarian reserve.(55,56)

The relationship between increased female age, elevated basal FSH concentrations and diminished ovarian function with a lower chance of IVF success has been established.(57-60) The response to controlled ovarian hyperstimulation (COH) during assisted reproduction treatment is highly variable, even among women of similar ages. (61) This undoubtedly reflects the intersubject variation in ovarian reserve, which is primarily determined by the size of the primordial follicular pool at birth and the rate of its decline during reproductive life, both of which are genetically determined.(62)

2. Patients and methods
This study is prospective, single center study that was conducted at Ain Shams University Maternity Hospital in the period from May 2011 to May 2013. Fifty women who were referred to Assisted Reproduction center for their first IVF cycle in a pregnancy attempt were included in the study. Women with polycystic ovarian disease, endometriosis, hydrosalpinx, ovarian mass, fibroids, previous ovarian surgery, with endocrinological disorders (hyperthyroidism, hypothyroidism and hyperprolactinaemia) and with medical disorders (D.M, Hypertension) were excluded.

In day 3 of the normal menstrual cycle, all participants were subjected to blood sampling for measuring the serum inhibin-B and FSH as well as the ultrasound measurement of the AFC and OV. TVS was done using 7.5 MHz transvaginal probe of Madison Sonoco 8800 digital GAIA ultrasound machine with Doppler unit.

Ovarian Volume: the volume of each ovary was calculated by measuring the three perpendicular diameters and applying the formula for ovarian volume = D1 x D2 x D3 x 0.523 where D1, D2 and D3 are represent maximal longitudinal, antero-posterior and transverse diameter.(63) Mean ovarian volume is the reference value calculated in this study. Ovaries with cystic enlargements ≥ 15 mm were excluded from the analysis of the ovarian volume.

Antral follicle count: any round or oval structures in the ovaries were regarded as follicles. Follicles measuring smaller than 10 mm will be counted from lateral to medial margins of the ovary in order to determine the antral follicle count of each ovary. The total antral follicle count in both ovaries was recorded as reference value in the study.(64)

Serum E2, FSH and LH were measured in plasma specimens with an electrochemiluminescence immunoassay (ECLIA) on the Roche Elecsys 2010 immunoassay analyzer, using a commercial kit according to the manufacturer's sensitized assay protocol, the sensitivity of the assay is < 0.10mIU /mL. Serum inhibin B was determined using Enzyme Immunoassay (EIA). A commercial kit (RayBio) was used according to the manufacturer's sensitized assay protocol. The sensitivity of the assay is 34.6 pg. / mL.

Controlled Ovarian Stimulation Protocol: was performed according to a long GnRH agonist protocol starting in the midluteal phase. Seven days after ovulation, daily subcutaneous injections with triptoreline acetate (Decapeptyl 0.05 mg/day; Ferring
pharmaceuticals, Kiel, Germany) was started. On day 3 of the next cycle, ovarian stimulation was started with daily IM injections of a dose of 150 – 225 I.U. HMG (Menogon 75 IU /ampoule; Ferring pharmaceuticals, Kiel, Germany). The starting dose of the gonadotropins was prescribed according to the age, body built of the subjects. Then the duration and daily doses were adjusted according to serum E2 levels and follicular number and size in an ultrasound scan of the ovary. Ovarian stimulation was continued until the largest follicle reach a diameter of ≥18mm. The maximum duration of HMG administration was not allowed to exceed 16 days. If these criteria was met, Menogon and Decapeptyl was discontinued and 10.000 IU of HCG (Pregnyl. 10.000 IU/ampoule: Organon, Oss, Netherlands) was administered.

After that oocyte retrieval and embryo transfer were scheduled followed by luteal phase support by natural progesterone supplements 100-200 mg/twice per day for at least two weeks.

Oocyte Preparation and fertilization: the oocytes were placed in culture medium and intracytoplasmic sperm injection was performed using Olympus CK40 inverted phase micro-manipulating equipment. The injected oocytes were incubated at 37ºC. Fertilization was diagnosed by the presence of two pronuclei in the injected oocyte.

Embryos Selection: embryo quality was assessed according to presence of nuclear fragments and size, shape and symmetry and cytoplasmic appearance of the blastomeres. Grading of day-2 embryos. 66

Embryos Transfer: was done two days to five days after oocytes retrieval, up to four good quality embryos were transferred with a thin plastic cannula attached to a syringe (Cook embryo transfer catheter).

The study group was divided into two subgroups according to the number of oocytes retrieved. Patients with an oocyte count of five or more were considered good responders and patients with less than five were considered poor responders. Biochemical pregnancy was defined as a positive pregnancy test more than 3 days after the expected menses.

3. Results

Patients were grouped on the day of ovum pick up. Patients with an oocyte count of five or more were considered good responders (45 patients) and patients with less than five poor responders (5 patients). Between poor responders no female became pregnant while, thirty six patients of good responders had positive pregnancy tests with significant association.

Mean of basal levels inhibin-B in the studied women was 70.1±21, mean of OV and AFC was 5.5±1.2 and 9.8 ±2.0 respectively. Basal inhibin-B, OV and AFC had a statistically high significant decrease (P<0.001) between those with poor ovarian reserve compared with those with good ovarian reserve (table 1).

The patients' age ranged from 25 to 35 years with mean age being 29.8± 3.5 years. Mean of basal level of LH and FSH was 5.9±1.2 and 7.4±1.7 respectively and there was a statistically high significant increase (P<0.001) in those with poor ovarian reserve compared with those with good ovarian reserve (table 1).

<table>
<thead>
<tr>
<th>Table (1): hormonal and clinical parameters.</th>
<th>variable mean ± SD</th>
<th>ovarian reserve</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>good</td>
<td>poor</td>
</tr>
<tr>
<td>basal data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age (years)</td>
<td>29.3±3</td>
<td>34±1.3</td>
<td><0.001</td>
</tr>
<tr>
<td>LH (mIU/mL)</td>
<td>5.7±1</td>
<td>7.6±1.1</td>
<td></td>
</tr>
<tr>
<td>FSH (mIU/mL)</td>
<td>7.2±1.5</td>
<td>9.9±1.2</td>
<td></td>
</tr>
<tr>
<td>Inhibin-B (pg/mL)</td>
<td>73.2±20</td>
<td>42.7±8</td>
<td></td>
</tr>
<tr>
<td>ultrasound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OV</td>
<td>5.7±2</td>
<td>3.2±1.3</td>
<td></td>
</tr>
<tr>
<td>AFC</td>
<td>10.2±1.6</td>
<td>5.4±0.5</td>
<td></td>
</tr>
<tr>
<td>Final E2</td>
<td>3194±852</td>
<td>618±215</td>
<td><0.001</td>
</tr>
<tr>
<td>HMG ampoules</td>
<td>37±6</td>
<td>56±2.8</td>
<td></td>
</tr>
<tr>
<td>Days of stimulation</td>
<td>12.3±0.9</td>
<td>13.8±0.4</td>
<td></td>
</tr>
<tr>
<td>Number of retrieved oocytes</td>
<td>11±2.7</td>
<td>3±0.5</td>
<td></td>
</tr>
<tr>
<td>Number of fertilized oocytes</td>
<td>9±2.5</td>
<td>2±0.8</td>
<td></td>
</tr>
<tr>
<td>Number of good embryos</td>
<td>7±2.3</td>
<td>2±0.9</td>
<td></td>
</tr>
</tbody>
</table>

Day-3 AFC and inhibin –B were more sensitive and specific than either day-3 OV or day-3 FSH in prediction of poor ovarian response (97% and 99% in AFC and 95% and 99% in inhibin-B vs. 91% and 99% in OV and 40% and 35% in FSH, respectively). Also, day-3 AFC and inhibin –B have higher predictively for ovarian response than either day-3 OV or day-3 FSH (positive and negative
predictive value was 98% and 99% in inhibin-B and AFC vs. 94% and 92% in OV and 47% and 50% in FSH, respectively) (table 2, figure 1).

As regards clinical response to the controlled ovarian stimulation in the whole studied cases the average days of stimulation was 12.5±1.0, total 38.5±8.9 HMG ampoules and final E2 2937 on HCG day. Oocyte retrieval was performed with average retrieval of 10 oocytes. The good reserve group had higher final E2, shorter days of stimulation, lower number of HMG ampoules, higher number of retrieved oocytes and good embryos compared to the other group with significant difference between both groups (table 1).

Table (2); Validity of inhibin-B, FSH, OV and AFC in prediction of ovarian reserve

<table>
<thead>
<tr>
<th></th>
<th>Inhibin-B</th>
<th>FSH</th>
<th>OV</th>
<th>AFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best cut off</td>
<td>44</td>
<td>7.5</td>
<td>4.6</td>
<td>6.5</td>
</tr>
<tr>
<td>AUC (area under the curve)</td>
<td>0.98</td>
<td>0.11</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>95%</td>
<td>40%</td>
<td>91%</td>
<td>97%</td>
</tr>
<tr>
<td>Specificity</td>
<td>99%</td>
<td>35%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>PPV</td>
<td>98%</td>
<td>47%</td>
<td>94%</td>
<td>98%</td>
</tr>
<tr>
<td>NPV</td>
<td>99%</td>
<td>50%</td>
<td>92%</td>
<td>99%</td>
</tr>
</tbody>
</table>

Figure (1): ROC curve for the parameters investigated in prediction of ovarian reserve in the studied women

4. Discussion

Pretreatment assessment of ovarian reserve allows appropriate counseling and modification of an individual’s treatment protocol in an attempt to maximize their potential response.(67) In this study 10% of the studied cases (n=50) had poor ovarian outcome and 90% had good ovarian outcome. Nine women with good ovarian outcome became non pregnant, so the occurrence of pregnancy was affected by multiple different factors involved in oocytes retrieval and embryos transfer that were out of our control.

AFC in early follicular phase of the menstrual cycle has highly significant increase (P<0.001) between those with good ovarian reserve compared with those with poor ovarian reserve. AFC is good predictor of poor ovarian response, as demonstrated by AUC (0.99). The sensitivity, specificity, positive and negative predictive values of AFC was 0.97%, 0.99%, 0.98% and 0.99% respectively.

Previous studies examining the ability of AFC to predict both the number of oocytes retrieved and the poor ovarian response found that AFC has at
least the same level of accuracy and clinical value for
the prediction of poor response and non pregnancy as
AMH.(68,69) However, three dimensions ultrasound
was used in AFC provided more reliable and valid
measurements.(70)

The mean OV has high significant increase
(P<0.001) between those with good ovarian reserve
compared with those with poor ovarian reserve. The
sensitivity, specificity, positive and negative predictive values of OV were 0.91%, 0.99%, 0.94% and
0.92% respectively. Ovarian volume was predictive of both the number of oocytes retrieved and
poor response on univariate analysis as reported
in other studies(71,72), ovarian volume is an indirect indicator of the size of the follicle cohort and is not
only influenced by the number of follicles but also by
their size.(44,73)

The basal serum inhibin B level was statistically significantly lower in poor responders
than normal responders. The sensitivity, specificity, positive and negative predictive values of inhibin-B was 0.95 %, 0.99 %, 0.98 % and 0.99 % respectively.
In agreement with this study, Tan et al(74) found that both basal and stimulated serum inhibin B levels are lower in poor responders than in controls. Compared with AMH, basal and stimulated inhibin B are more
accurate predictors of ovarian response in patients undergoing IVF. (74)Other studies confirmed that
basal inhibin B concentrations are correlated directly with the parameters of ovarian response, ovum
retrieval and fertilization outcome.(75-77)

Against our findings, 2 studies showed that
inhibin B levels did not show any statistically
significant differences between poor and good
ovarian responders. (69, 70) It was reported that AFC
and AMH are the most significant predictors of poor
response to ovarian stimulation during ART
compared to inhibin B.(70)

References
(1) Craig J, Orisaka M, Wang H, Orisaka S,
Thompson W. Gonadotropin and intra-ovarian
signals regulating follicle development and
atresia: the delicate balance between life and
(2) Hirshfield AN. Development of follicles in
the mammalian ovary. Int Rev Cytol 1991; 124, 43–
101.
(3) Titus S, Li F, Stobezski R, Akula K, Unsal E,
Jeong K, et al. Impairment of BRCA1-related
DNA double-strand break repair leads to
ovarian aging in mice and humans. SciTransl
(4) Baird DT, Collins J, Egozcue J, Evers LH,
(5) Lawson R, El-Toukhy T, Kassab A, Taylor A,
Braude P, et al. Poor response to ovulation
induction is a stronger predictor of early
menopause than elevated basal FSH: a life table
(6) De Boer EJ, den Tonkelaar I, teVelde ER,
Burger CW, Klip H, van Leeuwen F. A low
number of retrieved oocytes at in vitro
fertilization treatment are predictive of early
(7) De Boer EJ, den Tonkelaar I, teVelde ER,
Burger CW and van Leeuwen FE. Increased risk
of early menopausal transition and natural
menopause after poor response at first IVF
management of female infertility. JAMA 2003;
290:1767–1770.
(8) Barnhart K, Osheroff J. We are overinterpreting
the predictive value of serum follicle
stimulating hormone levels. Fertil Steril 1999;
72:8–9.
(9) Perloe M, Levy DP and Sills SE. Strategies for
ascertaining ovarian reserve among women
suspected of subfertility. Int J Fertil 2000;
(10) Toner JP. Ovarian reserve, female age and the
chance for successful pregnancy. Minerva
(11) Smotrich DB, Widra EA, Gindoff PR, Levy MJ,
Hall JL and Stillman RJ. Prognostic value of
day 3 estradiol on in vitro fertilization outcome.
(12) Evers JL, Slaats P, Land JA, Dumoulin JC and
Dunselman GA. Elevated levels of basal
estradiol 17-B predict poor response in patients
with normal basal levels of follicle stimulating
hormone undergoing in vitro fertilization.
(13) Frattarelli JL, Bergh PA, Drews MR, Sharara FI
and Scott RT. Evaluation of basal estradiol
levels in assisted reproductive technology
(14) Thatcher SS and Naftolin F. The aging and aged
99.
review of hormonal changes during the
menopausal transition: focus on findings from

(64) Tomas C, Nuojua-Huttunen S and Martikainen H. Pretreatment transvaginal ultrasound examination predicts ovarian responsiveness to

(76) Wunder DM, Bersinger NA, Yared M, Kretschmer R and Birkhäuser MH. Statistically significant changes of antimullerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women. Fertil Steril 2008; 89:927–33.