Potential theory method and spectral relationships of a generalized Macdonald kernel in some different domains

M. A. Abdou¹ and M. A. Elsayed²

¹ Department of Mathematics Faculty of Education Alexandria University Egypt
² Department of basic science High institute for Engineering Elshorouk Academy Egypt
dr.mohamed.a.elsayed@gmail.com

Abstract: A generalized potential theory method is used to construct spectral relationships, in some different domains, for an integral equation, in three dimensional, with a generalized potential kernel. This kernel, under certain conditions, will take the generalized Macdonald function form. Also, the spectral relationships are discussed and obtained in different domains of integration. Many special cases are derived and discussed from the work.

Keywords: Spectral relationships (SRs), Boundary value problem (BVP), ordinary differential equation (ODE), integral operator (IO).

Introduction:

The mathematical formulation of physical phenomena, and contact problems in relationships the theory of elasticity, often involves singular integral equation with different kernels. In Mkhitarian and Abdou [1,2], using Krein’s method, obtained the spectral for the integral operator containing logarithmic kernel and Carleman kernel, respectively. The monographs [3-5] contain many different SRs for different kinds of integral equations, in one, two and three dimensional. The generalized potential theory method is applied and used, in Abdou [6-7], to obtain the SRs for three-dimensional semi-symmetric contact problem. The Hertz contact problem contains two rigid surfaces, having two different elastic materials and occupying the contact domain \(\Omega = \{(x, y, z) \in \Omega : \sqrt{x^2 + y^2} \leq a, z = 0\} \) with potential kernel and generalized potential kernel, respectively. Also, in Abdou , Salama [8], the orthogonal polynomials method is used to obtain many different SRs in one, two and three dimensional, for Volterra-Fredholm integral equation of the first kind in the space \(L_2 (\Omega) \times C[0, T], T < 1 \), where the Volterra integral term is considered in time, while the Fredholm term is considered in position.

In this work, the eigenvalues and eigenfunctions of the integral equation

\[
\int \int_{\Omega} k(x - \xi, y - \eta) \Phi(\xi, \eta) d\xi d\eta = f(x, y)
\]

under the condition

\[
\int \int_{\Omega} \Phi(x, y) dx dy = P, (P is a constant)
\]

will be obtained in some different domains of integration \(\Omega \), where

(1) \(\Omega = \{(x, y, z) \in \Omega : |x| < \infty, 0 < y < \infty, |z| < \infty\} \)

(2) \(\Omega = \{(x, y, z) \in \Omega : |x| < \infty, |y| < a, |z| < \infty\} \)

(3) \(\Omega = \{(x, y, z) \in \Omega : |x| < \infty, |y| \geq a, |z| = 0\} \)

The physical meaning for the contact problems and the spectral relationships was explained in the work of Mkhitarian and Abdou [9, 10].

In order to guarantee the existence of a unique solution of Eq.(1.1) in \(L_2 (\Omega) \), we assume the following conditions:

(i) The kernel \(k(x - \xi, y - \eta) \) satisfies in \(L_2 \) the condition

\[
\left\{ \int \int_{\Omega} \int \int_{\Omega} k(x - \xi, y - \eta) \Phi(\xi, \eta) d\xi d\eta dx dy \right\}^{1/2} = A,(A is a constant)
\]

(ii) The given function \(f(x, y) \) with its first partial derivatives are continuous.

(iii) The unknown function \(\Phi(x, t) \) satisfies Lipschitz condition for \(x \) and \(y \).
2. Potential theory method, see [10,11]

The integral equation (1.1), with the kernel (1.2), after using the complex Fourier integral transforms
\[
\Phi_s(y) = \int_{-\infty}^{\infty} \Phi(x,y)e^{i\omega x}dx,
\]
\[
f_s(y) = f_{-\infty}^{\infty} f(x,y)e^{i\omega x}dx
\]
and the famous definition of the generalized Macdonald function Eq.(3.773.6), p.433, of Gradstein , Ryzhik [12], takes the form
\[
\int_{\mathbb{R}} K_{\mu}(|s| |y - \eta|) \Phi_s(\eta) |y - \eta|^\mu d\eta = \tilde{f}(y),
\]
\[
\left\{ \begin{array}{l}
(\mu + \frac{1}{2}) |s|^{-\mu} f_s(y), (f_s(y) = f(y,s)) \\
\end{array} \right.
\]
(2.6)
where \(K_{\mu}(|s| |y|)\) is the generalized Macdonald kernel, \(s\) is the coefficients of Fourier integraland \(F(\cdot)\) is the Gamma function.

Now, Eq.(2.6) is equivalent to (1.1), where the domain of integration \(L\) is defined in the form:
\[
\begin{align*}
(1) & \ L = \left\{ (y,z) \in L : 0 \leq y < \infty, |z| < \infty \right\}, \\
(2) & \ L = \left\{ (y,z) \in L : |y| < a, |z| < \infty \right\}, \\
(3) & \ L = \left\{ (y,z) \in L : |y| \geq a, |z| < \infty \right\}.
\end{align*}
\]

Using the principal idea of the potential theory method, see [10,11], we can write the integral equation (1.1) in three dimensional form
\[
\int_{\Omega} \frac{\Phi(\xi,\eta)}{|(x-\xi)^2 + (y-\eta)^2 + z^2|^{1/2}} d\xi d\eta = U(x,y,z)
\]
(2.7)
The integral equation (1.1) or (2.7), is equivalent to the following BVP
\[
\Delta U(x,y,z) + \frac{2\mu U}{z} = 0,
\]
\[
\Delta U(x,y,z) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} (x,y,z) \in \Omega
\]
\[
U(x,y,z) = f(x,y), \quad (x,y,0) \in \Omega
\]
\[
U(x,y,z) \approx P r^{-1-2\mu} \text{ as } r \to \infty,
\]
\[
r = \sqrt{x^2 + y^2 + z^2}
\]
(2.8)
After constructing the solution of the BVP (2.8), the solution of (1.1) is completely determined from the equivalence condition
\[
-2\pi \Phi(x,y) = \text{sgn } z \lim_{z \to 0} z |z|^{2\mu} \frac{\partial \Phi(x,y,z)}{\partial z}, (x,y,0) \in \Omega
\]
(2.9)
Using the complex Fourier integral transform, with respect to \(x\), the BVP (2.8) and the integral equation (2.7), respectively, become
\[
\left(\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + \frac{2\mu}{z} \frac{\partial}{\partial z} - s^2 \right) U_s(y,z) = 0
\]
\[
U_s(y,z)|_{z=0} = f_s(y), (y,0) \in L
\]
\[
U_s(y,z) \to 0 \text{ as } y^2 + z^2 \to \infty; \quad (U_s(y,z) = U(y,z,s))
\]
(2.10)
and
\[
U_s(y,z) = \frac{\sqrt{|s|^{\mu}}}{2^{\mu-1} \Gamma(\mu + \frac{1}{2})} \int_{|y|} K_{\mu}(|s| (|y| + x^2 + z^2)^{\frac{1}{2}}) d|y|
\]
(2.11)
Also, the equivalence condition (2.9) takes the form
\[
-2\pi \Phi(y) = \text{sgn } z \lim_{z \to 0} z |z|^{2\mu} \frac{\partial \Phi(y,z)}{\partial z}, (y \in L)
\]
(2.12)
To eliminate the term \(2U_s\), from the formula (2.10), we set
\[
V_s(y,z) = |z|^{-\mu} U_s(y,z)
\]
(2.13)
to obtain
\[
\frac{\partial^2 V_s}{\partial y^2} + \frac{\partial^2 V_s}{\partial z^2} + \mu (1 - \mu) V_s - s^2 V_s = 0, (y,z) \in L,
\]
\[
|z|^{-\mu} V_s(y,z)|_{z=0} = f_s(y), (y,0) \in L,
\]
\[
|z|^{-\mu} V_s(y,z) \to 0 \text{ as } y^2 + z^2 \to \infty
\]
(2.14)

3 Method of solution:

Here, we will discuss the solution of the BVP (2.14), when the domain of integration takes the three cases (1'), (2') and (3').

Case (1') Consider the complex plane \(w = y + iv\), \(z = \sqrt{-1}w\), and the transformation mapping
\[
w = \frac{1}{2} z^2 , \quad z = u + iv
\]
(3.15)
Hence, we get
\[
y = \frac{1}{2} (u^2 - v^2), z = u v; (-\infty < u < \infty; 0 < v < \infty)
\]
(3.16)
Using the transformation mapping (3.15), the BVP (2.14), yields
\[
\frac{\partial^2 W_s}{\partial u^2} + \frac{\partial^2 W_s}{\partial v^2} + (\mu (1 - \mu)) \left(\frac{1}{u^2} + \frac{1}{v^2} \right) W_s
\]
\[
- s^2 (u^2 + v^2) W_s = 0 (u > 0)
\]
\[
|u|^{\mu} W_s(u,v)|_{v=0} = f_s \left(\frac{u^2}{2} \right), -\infty < u < \infty
\]
\[
\lim_{u \to \infty} \lim_{v \to \infty} W_s(u,v) = 0
\]
(3.17)
Also, the equivalence condition (2.12) becomes
The second linear solution of (3.23),

\[\Phi_2(y) = u^{\mu-1} \lim_{v \to 0} \frac{\partial \Phi(u,v)}{\partial v}, \]

\[\left(y = \frac{u^2}{2}, u > 0 \right), \]

\(\Phi(u,v) = U_s \left(\frac{1}{2}(u^2 - v^2),uv \right) \) \((|u|^\nu)^{-\mu} W_s(u,v) \) \((3.18) \)

To solve the BVP (3.17) we use the separation of variables

\[W_s(u,v) = X(u)Y(v) \]

Hence, we have

\(\frac{d^2X}{du^2} + \left[\frac{(1-\mu)}{u^2} - \frac{s^2}{2} + \lambda^2 \right] X(u) = 0, \quad (\infty < u < \infty) \)

\(\frac{d^2Y}{dv^2} + \left[\frac{(1-\mu)}{v^2} - \frac{s^2}{2} + \lambda^2 \right] Y(v) = 0, \quad (0 < v < \infty) \)

(3.20)

(3.21)

where \(\lambda^2 \) is the constant of separation.

To solve the formula (3.20), we use the substitution

\[X(u) = t^{-\frac{|\mu|}{2}} e^{\frac{t^2}{2}} F(t), \quad t = |s|u^2 \]

(3.22)

to get (see [13],P.237),

\[t \frac{d^2F}{dt^2} + (c - t) \frac{dF}{dt} - aF = 0, \quad (0 \leq t < \infty), \]

\[a = \frac{1}{4} (4\mu + 1) - \frac{\lambda^2}{4|s|} \left(c = \mu + \frac{1}{2} \right) \]

(3.23)

The ODE (3.23), has a regular point at \(t = 0 \) and its solution can be represented in the hyper-geometric function \(F(t) = \psi(a,b;t) \). Hence, the solution of (3.20) becomes

\[X(u) = \left(\sqrt{\pi} |u| \right)^\mu e^{-\frac{|\mu|}{2} |s| u^2} \left(\psi \left(\frac{4\mu+1}{4} - \frac{\lambda^2}{4|s|}, \mu + \frac{1}{2}; |s| u^2 \right) \right) \]

(3.24)

The function \(X(u) \) of (3.24) is bounded for \(u = 0 \) and \(0 \leq \mu < \frac{1}{2} \), while, for \(|u| \to \infty, X(u) \) is unbounded.

Therefore, to obtain bounded solution in the hyper-geometric form \(\psi(a,c;|s|u^2) \), we assume (see [14])

\[\lambda_n = (4n + 1 + 2\mu)|s|(n = 0,1,2,...) \]

(3.25)

Then, we use the famous formula (see [14],p.189),

\[L_n^{\mu-\frac{1}{2}}(u) = \left(n + \mu - \frac{1}{2} \right) \psi \left(-n, \mu + \frac{1}{2}, u \right) \]

(3.26)

where \(L_n^{\mu-\frac{1}{2}}(u) \) is the Chebyshev-Hermit function (Laguerre function), to get

\[X(u) = \left(\sqrt{\pi} |u| \right)^\mu e^{-\frac{|\mu|}{2} |s| u^2} L_n^{\mu-\frac{1}{2}}(|s| u^2) \]

\[(n = 0,1,2,...,0 \leq \mu < \frac{1}{2}) \]

(3.27)

The second linear solution of (3.23), \(F(t) = t^{\frac{1}{2}-\mu} \psi(a-c+1,2-c,t) \), is unbounded when \(t \to \infty \). Hence, the bounded function (3.26), for \(-\infty < u < \infty \), represents a unique solution of the ODE (3.20).

Also, when \(0 < v < \infty \), we can obtain the unique solution of the ODE (3.21) in the form

\[Y(v) = \left(\sqrt{|s|} |v| \right)^\nu e^{-\frac{|\nu|}{2} v^2} T \left(n + \mu + \frac{1}{2}, \mu + \frac{1}{2}; |s| v^2 \right) \]

(3.28)

where \(T(\alpha,\beta;\gamma) \) is the Tricomi function. The relation between Tricomi function and the hyper-geometric function is (see [13],p.245)

\[T(\alpha,\beta;\gamma) = \frac{\Gamma(1-c)}{\Gamma(c-a+1)} \psi(a,c;v) + \frac{\Gamma(c-1)}{\Gamma(a)} v^{1-c} \psi(a-c+1,2-c;v) \]

(3.29)

\((c \neq n) \)

Now, using (3.26),(3.28) in the fourth formula of (3.17) we completely determine the potential function \(W_s(u,v) \), then using the result in the second formula of (3.18), we obtain

\[\Phi_2(y) = \left(\frac{2\pi}{\sqrt{c}} \right)^\frac{1}{2} \frac{r^{\frac{1}{2}} \Gamma \left(\frac{n+1}{2} \right)}{\Gamma \left(n+\frac{1}{2} \right)} \left(|s| u^2 \right)^{\mu-\frac{1}{2}} L_n^{\mu-\frac{1}{2}}(2|s| u^2) \]}

\[(0 < y < \infty) \]

(3.30)

With the aid of (3.29) and (3.16), when \(z = 0 \), the second formula of Eq.(2.10) or (3.17), becomes

\[f_s(y) = U_s(y,0) = \frac{\Gamma(\mu+1)}{\Gamma(n+\mu+\frac{1}{2})} |s| \mu e^{-|s| y} L_n^{\mu-\frac{1}{2}}(2|s| y) \]

(3.31)

Using the two formulas (3.30) and (3.31) in (2.6), we have the following spectral relationships with the generalized Macdonald kernel

\[\int_0^\infty K_\mu(y-\eta)e^{-\eta} L_n^{\mu-\frac{1}{2}}(2\eta) d\eta = \omega_n e^{-\eta} L_n^{\mu-\frac{1}{2}}(2\eta) \]

\[\omega_n = \sqrt{\pi} \Gamma \left(\frac{1}{2} - \mu \right) \Gamma \left(n + \frac{1}{2} - \mu \right) (|\mu| < \frac{1}{2}, n \geq 0) \]

(3.32)
For obtaining the SRs when \(y < 0 \), we let, in (3.29),
\[
u = 0, y = -\frac{v_1^2}{2},
\]
hence, we can obtain
\[
\int_0^{\infty} \frac{\mu}{b^{-\eta} \eta} \frac{\pi}{v_n} \frac{\mu}{e^\eta \eta^{2\mu}} \eta \frac{\pi}{ \eta^{2\mu}} \frac{d \eta}{ \sqrt{2r(\mu + 1)^2}} e^\eta T \left(n + \mu + \frac{1}{2}, \mu + \frac{1}{2} - 2y \right)
\]
(3.33)

Case (2): To obtain the solution of the BVP (3.16) we use the elliptic coordinates [14]
\[
\omega = y + iz = \alpha \cosh \xi, \quad \xi = u + iv,
\]
i.e.
\[
y = \alpha \cosh u \cos v, z = \alpha \sinh u \sin v, (0 \leq u < \infty, -\pi < v < \pi)
\]
(3.34)
The conformal mapping (3.34) transforms the complex plane \(\omega \) of the domain
\[L = \{ |y| < a, |z| < \infty \} \]
to the domain \(\Pi = \{ 0 \leq u < \infty, -\pi < v < \pi \} \). Taking the transformation mapping (3.34), into account, the solution of the BVP (2.14), can be written in the form
\[
V_\nu(y, z) = V_\nu(\alpha \cosh u \cos v, \alpha \sinh u \sin v).
\]
(3.35)
Substituting from (3.35) into the first formula of (2.14), after certain elementary manipulation, we have the following two ODEs
\[
F'(u) - [\alpha + 2q \cosh 2u - \mu(1 - \mu) \sinh^2 u]F = 0, (0 \leq u < \infty, q = \frac{a^2 \lambda}{4}),
\]
(3.36)
\[
G'(v) + [\alpha + 2q \cos 2v + \mu(1 - \mu) \sin^2 v]G = 0 \quad (-\pi < v < \pi)
\]
(3.37)
where \(\alpha \) is the constant of separation.
The formula (3.37) reduces to (3.36), if we assume \(v = iu, i = \sqrt{-1} \); hence, we can limit ourselves to (3.37). For this aim, we assume \(G(v) = \sqrt{\sin v} H(v) \), to get
\[
\frac{d^2 H}{dv^2} + \cot v \frac{dH}{dv} + [\lambda + 4 \sin^2 v - \nu^2 \sin^2 v]H = 0, \quad \lambda = \alpha - \frac{1}{4} + 2q, \gamma = -\nu, \nu = \frac{1}{2} - \mu
\]
(3.38)
After obtaining the solution of (3.38), the general solution of (3.37), for \(m \geq 0, 0 < v < \pi \), can be written in the forms (see[10])
\[
\sum_{r=0}^{\infty} \frac{(-1)^r \sin \nu \Gamma(1 + 2v)}{\Gamma(1 + 2v)} b_{2m-v, r-m}(\cos v) C_{2r}^{\nu} \frac{1}{\Gamma(2r + 1 - 2v)} d \centering{dH}
\]
(3.39)
and
\[
G_{n}^{\nu}(v) = 2^{\nu} \frac{\sin \frac{1}{2} \nu \pi}{\Gamma(1 + 2v)} \sum_{r=0}^{\infty} \frac{(-1)^r \Gamma(1 + m - 2r)v}{\Gamma(1 + 2r)} b_{2m-v, r-m}(\cos v)
\]
(3.40)
where \(G^\nu(\alpha) \) is the Gegenbauer polynomial, and the recurrence coefficients \(b^\nu_{\nu}(\theta) \) can bedetermined by using the following orthogonal relation [14],
\[
\int_0^\pi [G^\nu_n(v)]^2 dv = h_n = \frac{n!}{\Gamma(n + 2 - v)} \frac{(n + 1 - v)}{(\Gamma(2 - v))^{-1}} (n \geq 1)
\]
(3.41)
Using the two formulas (3.39) and (3.40) in (3.41), we obtain
\[
\sum_{r=0}^{\infty} A_{n,r}^{\nu} b_{n-v, r-m}(\cos v) \theta = h_n ; n = \frac{n}{2}
\]
(3.42)
Where
\[
A_{n,r}^{\nu} = \left\{ \begin{array}{ll}
(2r)! \left[(2r + 1 - 2v)(2r + 1 - 2r - 2v) \right]^{-1} & \text{as } (n = 2m, m \geq 0) \\
(2r + 1)! \left[(2r + 2 - 2v)(2r + 2 - 2r - 2v) \right]^{-1} & \text{as } (n = 2m + 1, m \geq 0)
\end{array} \right.
\]
(3.43)
Since the unique solution of the ODE (3.36) is bounded in the interval \(u \in [0, \infty) \) and vanishes at infinity, then it can be assumed in the form
\[
F_{n}^{\nu}(u) = \sqrt{\sin u} S_{n-v}^{\nu}(\cos u, \theta)(0 \leq u < \infty)
\]
(3.44)
where \(S_{n-v}^{\nu}(\cos u, \theta) \) are spheroidal wave equations of the third kind, see [10,14].
By following the same way of [10] p.90-91, we can arrive to the spectral relationships.
\[
\int_a^b \sum_{\nu}[\nu]_{(\nu-u)}^{(\nu+u)} (a^2 - u^2)^{\nu} \frac{1}{\Gamma(2r + 1 - 2v)} d \centering{dH}
\]
(3.45)
where \(P_{n}^{\nu}(u, \theta) \) represents the solution of (3.38) and given by
functions of order \(n \) of the second and third kind, where
\[
\alpha_n = (-1)^{\frac{n}{2}} b_n^\mu(\gamma) P_{n+2r}^\mu(u,\theta) \quad (\theta = -\varphi, f = n - v)
\]
(3.46)

is the characteristic index and \(P_{n+2r}^\mu(u) \) is the Legendre polynomial of the first kind of order \(m \). Also,
\[
\delta_n = (-1)^{\frac{n}{2}} \frac{\beta_n}{\gamma} \sin(\pi \mu) \cdot a^{2q} \frac{n+\mu}{2} \frac{2s}{\mu}^{2^{1-n}} \times B_n^\nu(\theta) D_n^\nu(\theta) [E_n^\nu(\theta)]^{-1}
\]
\[
B_n^\nu(\theta) = (-1)^{\frac{n}{2}} \sum_{r=1}^{\infty} b_{n-r+1}^\nu(\theta) K_{n+2r+\mu}(2\sqrt{q})
\]
\[
D_n^\nu(\theta) = \sum_{r=-\infty}^{\infty} (\frac{1}{r!})^2 \Gamma(n + \mu + 1 - r) \Gamma(1 - n - \mu - r) \left[\sum_{r=0}^{\infty} (\frac{1}{r!})^2 \Gamma(n + 2\mu + 2r) \right]^{-1}
\]
\[
E_n^\nu(\theta) = \frac{1}{\Gamma(n + 2\mu)} \sum_{r=-\infty}^{-\frac{n}{2}-1} \frac{(-1)^r}{\Gamma(n + 2\mu + 2r)} \sum_{r=-\infty}^{\infty} b_{n-r}^\nu(\theta) ;
\]
\[
\beta_n = \begin{cases}
1 & \text{if } \mu = 2m \\
-1 & \text{if } \mu = 2m + 1
\end{cases} (n = 2m + 1) \quad (3.47)
\]

The integral coefficients \(\delta_n^\nu(\theta) \) of spherical wave function of the first kind \(S_{n+1}^m(u,\theta) \), \(m \geq 0 \) is given by Bateman, Ergel\'yi [13] p.175. The SRs for \(y > \alpha \) can be discussed from the transformation mapping (3.34) by putting \(v = 0 \) to get \(y > \alpha \), and \(v = \pi \) to have \(y < -\alpha \). Therefore, we have
\[
\int_{-\alpha}^{\alpha} \frac{K_n(|y-u|)}{|y-u|^m} (a^2 - u^2)^{-\frac{\nu}{2}} P^\nu_{(n+2\mu)}(u,\theta) \, du = \mu^\nu \frac{\text{sgn} y(y^2 - a^2)^{\frac{\nu}{2}}}{2^{n+\nu}} \{ |y| > \alpha \} \quad (3.48)
\]
where
\[
\mu^\nu = (-1)^{1+\frac{n+1}{2}} \frac{\sqrt{\pi^2 q e^{\varphi} \mu}(\mu)}{\varphi} \left| 2s \right|^{2^{1-n}} \left\{ (n = 2m) \right\} \left\{ (n = 2m + 1) \right\} \quad (3.49)
\]
As an important case, the SRs when \(\mu = 0 \), can be obtained, after obtaining the solution of the BVP of (2.10), in the form
\[
U(x,y) = F_k(u) c_n(v, -q)
\]
(3.50)
where \(c_n(x, -q) \) and \(F_k(u, -q) \) are the Mathieu functions of order \(n \) of the second and third kind, respectively. Then, using (3.48), in (2.11), when \(\mu = 0 \), and introducing the results in (2.10), to have
\[
\sum_{r=-\infty}^{\infty} (\frac{1}{r!})^2 \Gamma(n + \mu + 1 - r) \Gamma(1 - n - \mu - r) \left[\sum_{r=0}^{\infty} (\frac{1}{r!})^2 \Gamma(n + 2\mu + 2r) \right]^{-1}
\]
\[
\beta_n = \begin{cases}
1 & \text{if } \mu = 2m \\
-1 & \text{if } \mu = 2m + 1
\end{cases} (n = 2m + 1) \quad (3.47)
\]

The integral coefficients \(\delta_n^\nu(\theta) \) of spherical wave function of the first kind \(S_{n+1}^m(u,\theta) \), \(m \geq 0 \) is given by Bateman, Ergel\'yi [13] p.175. The SRs for \(y > \alpha \) can be discussed from the transformation mapping (3.34) by putting \(v = 0 \) to get \(y > \alpha \), and \(v = \pi \) to have \(y < -\alpha \). Therefore, we have
\[
\int_{-\alpha}^{\alpha} \frac{K_n(|y-u|)}{|y-u|^m} (a^2 - u^2)^{-\frac{\nu}{2}} P^\nu_{(n+2\mu)}(u,\theta) \, du = \mu^\nu \frac{\text{sgn} y(y^2 - a^2)^{\frac{\nu}{2}}}{2^{n+\nu}} \{ |y| > \alpha \} \quad (3.48)
\]
where
\[
\mu^\nu = (-1)^{1+\frac{n+1}{2}} \frac{\sqrt{\pi^2 q e^{\varphi} \mu}(\mu)}{\varphi} \left| 2s \right|^{2^{1-n}} \left\{ (n = 2m) \right\} \left\{ (n = 2m + 1) \right\} \quad (3.49)
\]
As an important case, the SRs when \(\mu = 0 \), can be obtained, after obtaining the solution of the BVP of (2.10), in the form
\[
U(x,y) = F_k(u) c_n(v, -q)
\]
(3.50)
where \(c_n(x, -q) \) and \(F_k(u, -q) \) are the Mathieu functions of order \(n \) of the second and third kind, respectively. Then, using (3.48), in (2.11), when \(\mu = 0 \), and introducing the results in (2.10), to have
The general solution of BVP (2.10), yields
\[
U_i(y, z) = \left(\sinh u \cdot \sin v\right)^{-m} F_i^\nu(u) G_{i,v}^\nu(v) (-\infty < u < \infty, 0 \leq v \leq \pi)
\] \hspace{1cm} (3.56)
where \(G_{i,v}^\nu(v) \) and \(F_i^\nu(u) \) are completely determined by (3.54) and (3.55), respectively.

After using (2.10), then (2.9), we can arrive to the following SRSs:
\[
\int_0^\infty \frac{K_{\mu i}(|y-u|)}{|y-u|^\mu} \pm \frac{K_{\mu i}(|y+u|)}{|y+u|^\mu} (u^2 - a^2)^{-m} S_{\nu}^\nu(u, \theta)du = \lambda_{\nu,\mu}^2 (a^2 - y^2)^{m} S_{\nu}^\nu(u, \theta) (u > a). \hspace{1cm} (3.57)
\]
\[
\lambda_{\nu,\mu}^2 = \pi^2 \alpha^2 \nu (2|s|)^{-\mu} K_{\nu,\nu}^\nu(\theta) \left[L_{\nu,\nu}^\nu(\theta) \right]^{-1},
\]
\[
K_{\nu,\nu}^\nu(\theta) = \left[\Gamma(1 - \nu) \right]^{-1} \sum_{r=-\infty}^\infty \text{Re} \left[b_{\nu,\nu}^\nu(\theta) \right]
\]
\[
\pm \pi^{-1} \sin(\pi \mu) \Gamma(\nu) \left\{ \text{Re} \left[\frac{\tan(\pi \delta_1)}{\cot(\pi \delta_1)} \cdot \sum_{r=0}^\infty (-1)^r b_{\nu,\nu}^\nu(\theta) \Gamma(1 - 2\delta_1 + 2r) \left[\Gamma(2\delta + 2r) \right]^{-1} \right] \right. \right.
\]
\[
\delta_1 = \frac{1}{2} (\mu - iT), T > 0, \gamma = -\frac{1}{2} + ir, \nu = \frac{1}{2} - \mu
\]
The spherical wave function, for \(0 < \gamma < \alpha \), we have \(0 < \nu < \frac{\pi}{2} \) is defined in the form (see [4], p.173-175),
\[
S_{\nu}^\nu(u, \theta) = \left[\pi \sinh(\pi T) \right]^{-1} e^{\pi(2T+i\mu)} \left\{ \sin(2\pi \delta_1) K_{\nu,\nu}^\nu(\theta) Q_{\nu,\nu}^\nu(u, \theta) - i \sin(2\pi \delta_1) K_{\nu,\nu}^\nu(\theta) Q_{\nu,\nu}^\nu(u, \theta) \right\}.
\]
\[
(\infty < u < \infty),
\]
\[
K_{\nu,\nu}^\nu(\theta) = 2^{-1} \left(\frac{q}{A} \right)^\nu \Gamma(2\delta_1) e^{-2\pi r(2T+i\mu)} \sum_{r=-\infty}^\infty (-1)^r b_{\nu,\nu}^\nu(\theta) \left[L_{\nu,\nu}^\nu(\theta) \right]^{-1}, \hspace{1cm} (3.58)
\]
\[
L_{\nu,\nu}^\nu(\theta) = \sum_{r=0}^\infty b_{\nu,\nu}^\nu(\theta), \hspace{1cm} (\gamma = -\frac{1}{2} + ir, r > 0, \gamma_1 = -\gamma - 1, \nu = \frac{1}{2} - \mu, \delta_1 = \frac{1}{2} (\mu - iT)).
\]
Then, the SRSs, in this case, take the form
\[
\int_0^\infty \left\{ \frac{K_{\mu i}(|y-u|)}{|y-u|^\mu} \right\} (u^2 - a^2)^{-m} S_{\nu}^\nu(u, \theta)du = \left[\frac{\pi^2}{\alpha^2 \nu} \right]^{1/2} \left[\frac{\tan(\pi \delta_1)}{\cot(\pi \delta_1)} \cdot \sum_{r=0}^\infty (-1)^r b_{\nu,\nu}^\nu(\theta) \Gamma(1 - 2\delta_1 + 2r) \left[\Gamma(2\delta + 2r) \right]^{-1} \right],
\]
\[
H_{\nu,\nu}^\nu(\nu) = (\sin v)^{-1} z G_{\nu,\nu}^\nu(v).
\]
Where \(G_{\nu,\nu}^\nu(v) \) are given by (3.54).

References:

[9] Mkhitaryan S.M., Spectral relationships for the integral operators generated by a kernel the form of a Weber-Sonien integral and their

12/13/2013